Skip to main content
Log in

Universal Amplitude Ratios in the Critical Two-Dimensional Ising Model on a Torus

Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using results from conformal field theory, we compute several universal amplitude ratios for the two-dimensional Ising model at criticality on a symmetric torus. These include the correlation-length ratio x =lim L→∞ ξ(L)/L and the first four magnetization moment ratios V 2n =〈\(M\) 2n〉/〈\(M\) 2n. As a corollary we get the first four renormalized 2n-point coupling constants for the massless theory on a symmetric torus, G*2n . We confirm these predictions by a high-precision Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. C. Domb, The Critical Point: A Historical Introduction to the Modern Theory of Critical Phenomena (Taylor & Francis, London, 1996).

    Google Scholar 

  2. V. Privman, P. C. Hohenberg, and A. Aharony, in Phase Transitions and Critical Phenomena, Vol. 14, C. Domb and J. L. Lebowitz, eds. (Academic Press, London/San Diego, 1991).

    Google Scholar 

  3. B. Nienhuis, in Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987).

    Google Scholar 

  4. J. L. Cardy, in Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987).

    Google Scholar 

  5. C. Itzykson, H. Saleur, and J.-B. Zuber, eds., Conformal Invariance and Applications to Statistical Mechanics (World Scientific, Singapore, 1988).

    Google Scholar 

  6. P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory (Springer-Verlag, New York, 1997).

    Google Scholar 

  7. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 2nd ed. (Clarendon Press, Oxford, 1993).

    Google Scholar 

  8. R. Guida and J. Zinn-Justin, J. Phys. A 31:8103 (1998), cond-mat/9803240.

    Google Scholar 

  9. G. Bhanot, M. Creutz, and J. Lacki, Phys. Rev. Lett. 69:1841 (1992), hep-lat/9206020.

    Google Scholar 

  10. J. Adler, C. Holm, and W. Janke, Physica A 201:581 (1993), hep-lat/9305005.

    Google Scholar 

  11. A. J. Guttmann and I. G. Enting, J. Phys. A 26:807 (1993), hep-lat/9212032.

    Google Scholar 

  12. A. J. Guttmann and I. G. Enting, J. Phys. A 27:5801 (1994), hep-lat/9312083.

    Google Scholar 

  13. H. Arisue and K. Tabata, Nucl. Phys. B 435:555 (1995), hep-lat/9407023.

    Google Scholar 

  14. P. Butera and M. Comi, Phys. Rev. E 55:6391 (1997), hep-lat/9703017.

    Google Scholar 

  15. P. Butera and M. Comi, Phys. Rev. B 56:8212 (1997), hep-lat/9703018.

    Google Scholar 

  16. P. Butera and M. Comi, Phys. Rev. B 60:6749 (1999), hep-lat/9903010.

    Google Scholar 

  17. C. Holm and W. Janke, Phys, Rev. B 48:936 (1993), hep-lat/9301002.

    Google Scholar 

  18. A. P. Gottlob and M. Hasenbusch, Physica A 201:593 (1993), cond-mat/9305020.

    Google Scholar 

  19. B. Li, N. Madras, and A. D. Sokal, J. Stat Phys. 80:661 (1995), hep-lat/9409003.

    Google Scholar 

  20. H. W. J. Blöte, E. Luitjen, and J. R. Heringa, J. Phys. A 28:6289 (1995), cond-mat/ 9509016.

    Google Scholar 

  21. M. P. Nightingale and H. W. J. Blöte, Phys. Rev. B 54:1001 (1996), cond-mat/9602089.

    Google Scholar 

  22. H. W. J. Blöte, J. R. Heringa, A. Hoogland, E. W. Meyer, and T. S. Smit, Phys. Rev. Lett. 76:2613 (1996), cond-mat/9602020.

    Google Scholar 

  23. S. Caracciolo, M. S. Causo, and A. Pelissetto, Phys. Rev. E 57:1215 (1998), cond-mat/ 9703250.

    Google Scholar 

  24. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, and A. Muñoz Sudupe, Phys. Lett. B 441:330 (1998), cond-mat/9805022.

    Google Scholar 

  25. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys. A 32:1 (1999), cond-mat/9805125.

    Google Scholar 

  26. M. M. Tsypin and H. W. J. Blöte, Probability distribution of the order parameter for the 3D Ising model universality class: A high precision Monte Carlo study. Preprint, cond-mat/9909343.

  27. S. Y. Zinn, S.-N. Lai, and M. E. Fisher, Phys. Rev. E 54:1176 (1996).

    Google Scholar 

  28. A. Pelissetto and E. Vicari, Nucl. Phys. B 519:626 (1998), cond-mat/9711078.

    Google Scholar 

  29. A. Pelissetto and E. Vicari, Nucl. Phys. B 522:605 (1998), cond-mat/9801098.

    Google Scholar 

  30. A. I. Sokolov and E. V. Orlov, Phys. Rev. B 58:2395 (1998), cond-mat/9804008.

    Google Scholar 

  31. J.-K. Kim, The critical renormalized coupling constants in the symmetric phase of the Ising models. Preprint, cond-mat/9905138.

  32. S. Caracclolo, R. G. Edwards, A. Pelissetto, and A. D. Sokal, Phys. Rev. Lett. 75:1891 (1995), hep-lat/9411009.

    Google Scholar 

  33. S. Caracciolo, R. G. Edwards, T. Mendes, A. Pelissetto, and A. D. Sokal, Nucl. Phys. B (Proc. Suppl.) 47:763 (1996), hep-lat/9509033.

    Google Scholar 

  34. G. Mana, A. Pelissetto, and A. D. Sokal, Phys. Rev. D 55:3674 (1997), hep-lat/9610021.

    Google Scholar 

  35. J. Balog and M. Niedermaier, Nucl. Phys. B 500:421 (1997), hep-th9612039.

    Google Scholar 

  36. J. Balog, M. Niedermaier, F. Niedermayer, A. Patrascioiu, E. Seiler, and P. Weisz, Phys. Rev. D 60:094508 (1999), hep-lat/9903036.

    Google Scholar 

  37. M. Caselle, R. Tateo, and S. Vinti, Universal amplitudes in the 2D four state Potts model. Preprint, cond-mat/9902146. Nucl. Phys. B, in press.

  38. G. Delfino, G. T. Barkema, and J. Cardy, Susceptibility amplitude ratios in the two-dimensional Potts model and percolation. Preprint, cond-mat/9908453.

  39. C. M. Naón, J. Phys. A 22:2877 (1989).

    Google Scholar 

  40. A. J. Liu and M. E. Fisher, Physica A 156:35 (1989).

    Google Scholar 

  41. J.-K. Kim and A. Patrascioiu, Phys. Rev. D 47:2588 (1993).

    Google Scholar 

  42. C. Gutsfeld, J. Küster, and G. Münster, Nucl. Phys. B 479:654 (1996), cond-mat/9606091.

    Google Scholar 

  43. S.-Y. Zinn and M. E. Fisher, Physica A 226:168 (1996).

    Google Scholar 

  44. R. Guida and J. Zinn-Justin, Nucl. Phys. B 489:626 (1997), hep-th/9610223.

    Google Scholar 

  45. M. Caselle and M. Hasenbusch, J. Phys. A 30:4963 (1997), hep-lat/9701007.

    Google Scholar 

  46. A. Pelissetto and E. Vicari, Nucl. Phys. B 540:639 (1999), cond-mat/9805317.

    Google Scholar 

  47. M. Weigel and W. Janke, Phys. Rev. Lett. 82:2318 (1999), cond-mat/9809253.

    Google Scholar 

  48. P. Butera and M. Comi, Phys. Rev. B 58:11552 (1998), hep-lat9805025.

    Google Scholar 

  49. A. I. Sokolov, E. V. Orlov, V. A. Ul'kov, and S. S. Kashtanov, Phys. Rev. E 60:1344 (1999), hep-th/9810082.

    Google Scholar 

  50. A. C. Petkou and N. D. Vlachos, Phys. Lett. B 446:306 (1999), hep-th/9803146.

    Google Scholar 

  51. E. Luitjen, K. Binder, and H. W. J. Blöte, Eur. Phys. J. B 9:289 (1999), cond-mat/ 9901042.

    Google Scholar 

  52. T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Phys. Rev. B 13:316 (1976).

    Google Scholar 

  53. P. Di Francesco, H. Saleur, and J.-B. Zuber, Nucl. Phys. B 290[FS20]:527 (1987).

    Google Scholar 

  54. P. Di Francesco, H. Saleur, and J.-B. Zuber, Europhys. Lett. 5:95 (1988).

    Google Scholar 

  55. J. L. Cardy, Phys. Rev. Lett. 60:2709 (1988).

    Google Scholar 

  56. J. L. Cardy, J. Phys. A 21:L797 (1988).

    Google Scholar 

  57. J. L. Cardy and H. Saleur, J. Phys. A 22:L601 (1989).

    Google Scholar 

  58. S. Caracciolo, A. Pelissetto, and A. D. Sokal, J. Phys. A 23:L969 (1990).

    Google Scholar 

  59. J. L. Cardy and G. Mussardo, Nucl. Phys. B 410:451 (1993), hep-th/9306028.

    Google Scholar 

  60. J. L. Cardy and A. J. Guttmann, J. Phys. A 26:2485 (1993), cond-mat/9303035.

    Google Scholar 

  61. A. V. Smilga, Phys. Rev. D 55:R443 (1997), hep-th9607154.

    Google Scholar 

  62. G. Delfino, Phys. Lett. B 419:291 (1998), hep-th9710019.

    Google Scholar 

  63. G. Delfino and J. L. Cardy, Nucl. Phys. B 519:551 (1998), hep-th/9712111.

    Google Scholar 

  64. K. Binder, Z. Phys. B 43:119 (1981).

    Google Scholar 

  65. C. M. Newman, Z. Wahr. verw. Geb. 33:75 (1975).

    Google Scholar 

  66. J. Bricmont, J. Stat. Phys. 17:289 (1977).

    Google Scholar 

  67. C. M. Newman, Commun. Math. Phys. 41:1 (1975).

    Google Scholar 

  68. S. B. Shlosman, Commun. Math. Phys. 102:679 (1986).

    Google Scholar 

  69. M. Lüscher, P. Weisz, and U. Wolff, Nucl. Phys. B 359:221 (1991).

    Google Scholar 

  70. J.-K. Kim, Phys. Rev. Lett. 70:1735 (1993).

    Google Scholar 

  71. S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, and A. D. Sokal, Phys. Rev. Lett. 74:2969 (1995), hep-lat9409004.

    Google Scholar 

  72. S. Caracciolo, A. Pelissetto, and A.D. Sokal, in preparation.

  73. V. Privman and M. E. Fisher, Phys. Rev. B 30:322 (1984).

    Google Scholar 

  74. J. L. Cardy, J. Phys. A 17:385 (1984).

    Google Scholar 

  75. J. Salas and A. D. Sokal, J. Stat. Phys. 87:1 (1997), hep-lat/9605018.

    Google Scholar 

  76. J. Salas and A. D. Sokal, J. Stat. Phys. 85:297 (1996), hep-lat9511022.

    Google Scholar 

  77. J. Salas and A. D. Sokal, J. Stat. Phys. 88:567 (1997), hep-lat/9607030.

    Google Scholar 

  78. J. Salas and A. D. Sokal, J. Stat. Phys. 92:729 (1998), cond-mat/9801079.

    Google Scholar 

  79. S. J. Ferreira and A. D. Sokal, J. Stat. Phys. 96:461 (1999), cond-mat/9811345.

    Google Scholar 

  80. J.-K. Kim, private communication.

  81. G. Kamieniarz and H. W. J. Blöte, J. Phys. A 26:201 (1993).

    Google Scholar 

  82. G. A. Baker Jr. and N. Kawashima, J. Phys. A 29:7183 (1996).

    Google Scholar 

  83. G. A. Baker Jr., J. Stat. Phys. 77:955 (1994).

    Google Scholar 

  84. P. Butera and N. Comi, Phys. Rev. B 54:15828 (1996), hep-lat/9710092.

    Google Scholar 

  85. J. C. LeGuillou and J. Zinn-Justin, Phys. Rev. B 21:3976 (1980).

    Google Scholar 

  86. C. M. Bender and S. Boettcher, Phys. Rev. D 48:4919 (1993), hep-th/9311060.

    Google Scholar 

  87. C. M. Bender and S. Boettcher, Phys. Rev. D 51:1875 (1995), hep-th/9405043.

    Google Scholar 

  88. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58:86 (1987).

    Google Scholar 

  89. R. G. Edwards and A. D. Sokal, Phys. Rev. D 38:2009 (1988).

    Google Scholar 

  90. A. D. Sokal, in Functional Integration: Basics and Applications (1996 Cargèse summer school), C. DeWitt-Morette, P. Cartier, and A. Folacci, eds. (Plenum, New York, 1997).

    Google Scholar 

  91. P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Japan 26(Suppl.):11 (1969).

    Google Scholar 

  92. C. M. Fortuin and P. W. Kasteleyn, Physica 57:536 (1972).

    Google Scholar 

  93. C. M. Fortuin, Physica 58:393 (1972); 59:545 (1972).

    Google Scholar 

  94. N. Madras and A. D. Sokal, J. Stat. Phys. 50:109 (1988).

    Google Scholar 

  95. X.-J. Li and A. D. Sokal, Phys. Rev. Lett. 63:827 (1989).

    Google Scholar 

  96. H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, J. Phys. A 30:8379 (1998), cond-mat/9707179; and private communication.

    Google Scholar 

  97. U. Wolff, Phys. Rev. Lett. 62:3834 (1989).

    Google Scholar 

  98. V. Privman, in Finite Size Scaling and Numerical Simulation of Statistical Systems, V. Privman, ed. (World Scientific, Singapore, 1990).

    Google Scholar 

  99. H. Guo and D. Jasnow, Phys. Rev. B 35:1846 (1987); 39:753 (E) (1989).

    Google Scholar 

  100. A. Aharony and M. E. Fisher, Phys. Rev. B 27:4394 (1983).

    Google Scholar 

  101. S. Gartenhaus and W. S. McCullough, Phys. Rev. B 38:11688 (1988).

    Google Scholar 

  102. B. Nickel, J. Phys. A: Math. Gen. 32:3889 (1999).

    Google Scholar 

  103. B. Nickel, Addendum to “On the singularity structure of the 2-d Ising model susceptibility.” University of Guelph preprint, June 1999.

  104. A. Pelissetto, private communication (May 1999).

  105. F. J. Wegner, Phys. Rev. B 5:4529 (1972).

    Google Scholar 

  106. F. J. Wegner, in Phase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, London, 1976).

    Google Scholar 

  107. J. Salas and A. D. Sokal, in preparation.

  108. C. M. Newman, private communication (1999).

  109. C. M. Newman, Commun. Math. Phys. 74:119 (1980).

    Google Scholar 

  110. C. M. Newman, Commun. Math. Phys. 91:75 (1983).

    Google Scholar 

  111. M. den Nijs, M. P. Nightingale, and M. Schick, Phys. Rev. B 26:2490 (1982).

    Google Scholar 

  112. J. K. Burton Jr. and C. L. Henley, J. Phys. A 30:8385 (1997), cond-mat/9708171.

    Google Scholar 

  113. S. Caracciolo, A. Pelissetto, J. Salas, and A. D. Sokal, work in progress.

  114. C. Itzykson and J.-M. Drouffe, Statistical Field Theory (Cambridge University Press, Cambridge, 1989), Vol. 2.

    Google Scholar 

  115. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1965).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salas, J., Sokal, A.D. Universal Amplitude Ratios in the Critical Two-Dimensional Ising Model on a Torus. Journal of Statistical Physics 98, 551–588 (2000). https://doi.org/10.1023/A:1018611122166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018611122166

Navigation