Skip to main content
Log in

The creep-rupture properties and the initiation and growth of the grain-boundary cracks in the cobalt-base HS-21 alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of the grain-boundary microstructures on the creep-rupture properties and the initiation and growth of the grain-boundary cracks was investigated using four kinds of specimen of various grain-boundary microstructures in the cobalt-base HS-21 alloy at 1089 K in air. Both the rupture strength and the creep ductility increased with increasing mean value of the fractal dimension of the grain boundaries, Dgb. The strain to crack initiation was largest in the specimen of the highest value (1.241), while the strain was much the same in the specimens of the Dgb value less than 1.162. This was explained by the local variation in the grain-boundary microstructures in these specimens. The mean value of the fractal dimension of the grain-boundary fracture, Df, was close to the value of Dgb, although the value of Df was a little higher than that of Dgb in the specimens of the lower Dgb values. The fracture appearance changed from a brittle grain-boundary fracture to a ductile one with increasing values of Dgb and Df. The crack-growth rate is the surface-notched specimens decreased with increasing value of Dgb. The threshold stress intensity factor for crack growth was higher in the specimens with the higher Dgb values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. BETTERIDGE and A. W. FRANKLIN, J. Inst. Metals 85 (195657) 473.

    Google Scholar 

  2. M. YAMAZAKI, J. Jpn Inst. Metals 30 (1966) 1032.

    CAS  Google Scholar 

  3. V. LUPINC, “High Temperature Alloys for Gas Turbines 1982” (Reidel, Dordrecht, 1982) p. 395.

    Google Scholar 

  4. M. KOBAYASHI, O. MIYAGAWA, T. SAGA and D. FUJISHIRO, J. Iron Steel Inst. Jpn 58 (1972) 79.

    Google Scholar 

  5. M. YAMAMOTO, O. MIYAGAWA, M. KOBAYASHI and D. FUJISHIRO, ibid. 63 (1977) 1848.

    CAS  Google Scholar 

  6. M. TANAKA, O. MIYAGAWA, T. SAKAKI and D. FUJISHIRO, ibid. 65 (1979) 939.

    CAS  Google Scholar 

  7. M. TANAKA, O. MIYAGAWA, T. SAKAKI, H. IIZUKA, F. ASHIHARA and D. FUJISHIRO, J. Mater. Sci. 23 (1988) 621.

    Article  CAS  Google Scholar 

  8. M. TANAKA, H. IIZUKA and F. ASHIHARA, ibid. 24 (1989) 1623.

    Article  CAS  Google Scholar 

  9. M. F. ASHBY, R. RAJ and R. C. GIFKINS, Scripta Metall. 4 (1970) 737.

    Article  Google Scholar 

  10. R. RAJ and M. F. ASHBY, Metall. Trans. 2 (1971) 1113.

    Google Scholar 

  11. F. W. CROSSMAN and M. F. ASHBY, Acta Metall. 23 (1975) 425.

    Article  CAS  Google Scholar 

  12. B. B. MANDELBROT, D. E. PASSOJA and A. J. PAULLAY, Nature 308 (1984) 721.

    Article  CAS  Google Scholar 

  13. V. Y. MILMAN, N. A. STELMASHENKO and R. BLUMENFELD, Progr. Mater. Sci. 38 (1994) 425.

    Article  CAS  Google Scholar 

  14. B. B. MANDELBROT, “The Fractal Geometry of Nature,” translated by H. Hironaka (Nikkei Science, Tokyo, 1985) p. 25.

    Google Scholar 

  15. M. TANAKA, J. Mater. Sci. 27 (1992) 4717.

    Article  CAS  Google Scholar 

  16. Idem, ibid. 28 (1993) 5753.

    Article  CAS  Google Scholar 

  17. M. TANAKA and H. IIZUKA, Z. Metallkde. 82 (1991) 442.

    CAS  Google Scholar 

  18. A. M. GOKHALE, W. J. DRURY and S. MISHRA, ASTM STP 1203, edited by J. E. Masters and L. N. Gilbertson (American Society for Testing and Materials, Philadelphia, PA, 1993) p. 3.

  19. W. J. DRURY and A. M. GOKHALE, ibid., p. 58.

  20. H. TAKAYASU, “Fractals in the Physical Sciences,” (Manchester University Press, Manchester, New York, 1990 p. 11.

    Google Scholar 

  21. S. ISHIMURA and S. ISHIMURA, “Fractal Mathematics,” (Tokyo Tosho, Tokyo, 1990) p. 246.

    Google Scholar 

  22. M. TANAKA, H. IIZUKA and F. ASHIHARA, J. Mater. Sci. 23 (1988) 3827.

    Article  CAS  Google Scholar 

  23. R. H. DAUSKARDT, F. HAUBENSAK and R. O. RITCHIE, Acta Metall. 38 (1990) 142.

    Google Scholar 

  24. A. KIUCHI, M. AOKI, M. KOBAYASHI and K. IKEDA, J. Iron Steel Inst. Jpn 68 (1982) 1830.

    Google Scholar 

  25. H. KITAGAWA and R. YUUKI, Trans. Jpn. Soc. Mech. Eng. 41-346 (1975) 1641.

    Google Scholar 

  26. M. ISHIDA, Trans. Jpn. Soc. Mech. Eng. 45-392 (1979) 306.

    Google Scholar 

  27. S. SURESH, Metall. Trans. 14A (1983) 2375.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TANAKA, M. The creep-rupture properties and the initiation and growth of the grain-boundary cracks in the cobalt-base HS-21 alloy. Journal of Materials Science 32, 1781–1788 (1997). https://doi.org/10.1023/A:1018536319231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018536319231

Keywords

Navigation