Skip to main content
Log in

Kinetics and Mechanism of Captopril Oxidation in Aqueous Solution Under Controlled Oxygen Partial Pressure

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The stability of captopril in aqueous solution at 32°C was studied in the pH range 6.6 to 8.0 under controlled oxygen partial pressure (90–760 mm Hg) with and without the addition of cupric ion. The oxidation product, captopril disulfide, was found to be the sole degradation product. A change in reaction rate from first order to zero order occurs as the captopril concentration decreases. The concentration at which this transition takes place is a function of the pH, oxygen partial pressure, and cupric ion concentration. The apparent first-order rate constants show a first-order dependency on both the oxygen partial pressure and the cupric ion concentration. However, the apparent zero-order rate constants show a first-order dependency on oxygen partial pressure and a second-order dependency on cupric ion concentration. As the pH increases from 6.6 to 8.0, the first-order process becomes more predominant. A mechanism which consists of cupric ion- and molecular oxygen-catalyzed oxidation is proposed to explain those observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. W. Cushman, H. S. Cheung, E. F. Sabo, and M. A. Ondetti. Biochemistry 16:5484–5491 (1977).

    Google Scholar 

  2. R. K. Ferguson, H. R. Brunner, G. A. Turini, H. Gavras, and D. N. McKinstry. Lancet 1:775–778 (1977).

    Google Scholar 

  3. P. Timmins, I. M. Jackson, and Y. J. Wang. Int. J. Pharm. 11:329–336 (1982).

    Google Scholar 

  4. Y. Kawahara, M. Hisaoka, Y. Yamazaki, A. Inage, and T. Morioka. Chem. Pharm. Bull. 29:150–157 (1981).

    Google Scholar 

  5. H. Kadin, Captopril. In Analytical Profiles of Drug Substances, Vol. 11, American Pharmaceutical Association, Washington, D.C., 1982, pp. 79–137.

    Google Scholar 

  6. T. D. Sokoloski and T. Higuchi. J. Pharm. Sci. 51:172–177 (1962).

    Google Scholar 

  7. D. D. Perrin and B. Dempsey. Buffers for pH and Metal Ion Control, Chapman and Hall, New York, 1974.

    Google Scholar 

  8. T. J. Wallace and A. Schriesheim. J. Org. Chem. 27:1514–1516 (1962).

    Google Scholar 

  9. T. J. Wallace and A. Schriesheim. Tetrahedron 21:2271–2280 (1965).

    Google Scholar 

  10. T. J. Wallace, A. Schriesheim, and W. Bartok. J. Org. Chem. 28:1311–1314 (1963).

    Google Scholar 

  11. C. F. Cullis, J. D. Hopton, and D. L. Trimm. J. Appl. Chem. 18:330–335 (1968).

    Google Scholar 

  12. E. G. Rippie and T. Higuchi. J. Pharm. Sci. 51:626–630 (1962).

    Google Scholar 

  13. E. G. Rippie and T. Higuchi. J. Pharm. Sci. 51:776–779 (1962).

    Google Scholar 

  14. T. J. Wallace, A. Schriesheim, H. Hurwitz, and M. B. Glaser. Ind. Eng. Chem. Process Des. Dev. 3:237–241 (1964).

    Google Scholar 

  15. C. F. Cullis, J. D. Hopton, C. J. Swan, and D. L. Trimm. J. Appl. Chem. 18:335–339 (1968).

    Google Scholar 

  16. C. J. Swan and D. J. Trimm. J. Appl. Chem. 18:340–344 (1968).

    Google Scholar 

  17. H. Nord. Acta Chem. Scand. 9:430–435 (1955).

    Google Scholar 

  18. M. L. Hitchman. Measurement of Dissolved Oxygen, John Wiley & Sons, New York, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, TY., Notari, R.E. Kinetics and Mechanism of Captopril Oxidation in Aqueous Solution Under Controlled Oxygen Partial Pressure. Pharm Res 4, 98–103 (1987). https://doi.org/10.1023/A:1016406716989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016406716989

Navigation