Skip to main content
Log in

Quantitative Structure–Activity Relationship (QSAR) Analysis of the Cytotoxicities Of Aminohydroxyguanidine Derivatives and Their Antiviral Activities in Vitro

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Substituted Schiff bases of l-amino-3-hydroxyguanidine (SB-HAG) were tested for the first time against noninfected T4 lymphocytes (CEM-6 cells) and the same cell line infected by HIV-1 in vitro. Twenty-one of 23 compounds at micromolar levels did not inhibit the growth of the noninfected T4 cells, suggesting minimal cytotoxicity. The antiviral effects of these compounds in a micromolar concentration range have been shown to be nonsignificant (<30%) against HIV-1. Three-dimensional parameter focusing of the physicochemical properties (i.e., log P and V w) and the marginal antiviral activities shows that the marginally active compounds lie in a region different from the inactive compounds. QSAR analysis of the two subsets shows that the cytotoxicity correlates well with the electronic and lipophilic parameters. The results of the QSAR analysis can serve as guidelines for further structural modification of this series of compounds to minimize the cytotoxicity against host cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. E. Came and L. A. Caliguiri. Handbook of Experimental Pharmacology, Springer-Verlag, Berlin, Heidelberg and New York, 1982, Vol. 61, pp. 147–204.

    Google Scholar 

  2. R. H. Adamson. Hydroxyguanidine—a new antitumor drug. Nature 236:400–401 (1972).

    Google Scholar 

  3. A. C. Sartorelli, K. C. Agrawal, and E. C. Moore. Mechanism of inhibition of ribonucleoside diphosphate reductase by α-(N)-heterocyclic aldehyde thiosemicarbazones. Biochem. Pharmacol 20:3119–3123 (1971).

    Google Scholar 

  4. W. A. Carter. Selective Inhibitors of Viral Function, CRC Press, Cleveland, Ohio, 1973, p. 213.

    Google Scholar 

  5. A. E. Tai, E. J. Lien, M. M. C. Lai, and T. A. Khwaja. Novel N-hydroxyguanidine derivatives as anticancer and antiviral agents. J. Med. Chem. 27:236–238 (1984).

    Google Scholar 

  6. A. T'ang, E. J. Lien, and M. M. C. Lai. Optimization of the Schiff-bases of N-hydroxy-N′-aminoguanidine as anticancer and antiviral agents. J. Med. Chem. 28:1103–1106 (1985).

    Google Scholar 

  7. J. G. Cory, G. C. Carter, P. E. Bacon, A. T'ang, and E. J. Lien. Inhibition of ribonucleotide reductase and L1210 cell growth by N-hydroxy-N′-aminoguanidine derivatives. Biochem. Pharmacol. 34:2645–2650 (1985).

    Google Scholar 

  8. G. Weekbecker, E. J. Lien, and J. G. Cory. Effects of N-hydroxy-N′-aminoguanidine isoquinoline in combination with other inhibitors of ribonucleotide reductase on L1210 cells. J. Natl. Cancer Inst. 80:491–496 (1988).

    Google Scholar 

  9. E. J. Lien, P. H. Wang, B. Koneru, M. D. Trousdale, and M. D. Yorber. QSAR of the antiviral and cytotoxic effects of N-OH derivatives and preliminary data on HSV-1 in comparison with Ara-C and acyclovir. Acta Pharm. Jugosl. 39:87–96 (1989).

    Google Scholar 

  10. P. H. Wang, J. G. Keck, E. J. Lien, and M. M. C. Lai. Design, synthesis, testing and quantitative structure-activity relationship analysis of substituted salicylaldehyde Schiff-bases of 1-amino-3-hydroxyguanidine tosylate as new antiviral agents against coronavirus. J. Med. Chem. 33:608–614 (1990).

    Google Scholar 

  11. M. Matsumoto, J. G. Fox, P. H. Wang, P. B. Koneru, E. J. Lien, and J. G. Cory. Inhibition of ribonucleotide reductase, growth of human colon carcinoma HT-29 cells, and mouse leukemia L1210 cells by n-hydroxy-n′-aminoguanidine derivatives. Biochem. Pharmacol. 40:1779–1783 (1990).

    Google Scholar 

  12. P. Valenzuela, R. W. Morris, A. Foras, W. Levinson, and W. J. Rutter. Are all nucleotidyl transferases metalloenzymes? Biochem. Biophys. Res. Comm. 53:1036–1041 (1973).

    Google Scholar 

  13. W. Levinson, A. Foras, B. Woodson, J. Jackson, and J. M. Bishop. Inhibition of RNA-dependent RNApolymerase of Rous sarcoma virus by thiosemicarbazones and several cations. Proc. Natl. Acad. Sci. 70:164–168 (1973).

    Google Scholar 

  14. H. Sigel. Metal Ions in Biological Systems, Marcel Dekker, New York, Basel, 1973, Vol. 16, pp. 245–267.

    Google Scholar 

  15. S. Kit. Viral-associated and induced enzymes. Pharmacol. Ther. 4:501–585 (1979).

    Google Scholar 

  16. B. Oberg. Inhibitors of virus-specific enzymes. In C. G. Stuart-Harris and C. J. Oxford (eds.), Problems of Antiviral Chemotherapy, Academic Press, London, 1983. pp. 35–64.

    Google Scholar 

  17. E. Helgstrand and B. Oberg. Enzymatic targets in virus chemotherapy. Antibiot. Chemother. 27:22–69 (1982).

    Google Scholar 

  18. R. E. F. Matthews. Fourth report of the international committee on taxonomy of viruses. Intervirology 17:1–200 (1982).

    Google Scholar 

  19. J. S. Oxford, A. R. M. Coates, D. Y. Sia, K. Brown, and S. Asad. AIDS and AIDS-related infections: Current strategies for prevention and therapy. J. Antimicrobiol. Chemother. A (Suppl.) 23:9–27 (1989).

    Google Scholar 

  20. J. S. Oxford and D. D. Perrin. Inhibition of the paticle-associated RNA-dependent RNA polymerase activity of influenza viruses by chelating agents. J. Gen. Virol. 23:59–71 (1974).

    Google Scholar 

  21. J. S. Oxford and D. D. Perrin. Influenza RNA transcriptase inhibitores: Studies in vitro and in vivo. Ann. N.Y. Acad. Sci. 284:613–623 (1977).

    Google Scholar 

  22. P. H. Wang and E. J. Lien. Effects of different buffer species on partition coefficients of drugs used in quantitative structure-activity relationship. J. Pharm. Sci. 69:662–668 (1980).

    Google Scholar 

  23. O. S. Weislow, R. Kiser, D. L. Fine, J. Bader, R. H. Shoemaker, and M. R. Boyd. New soluble-formazen assay for HIV-1 cytopathic effects: Application on high-flux screening of synthetic and natural products for AIDS-antiviral activity. J. Natl. Cancer Inst. 81:577–586 (1989).

    Google Scholar 

  24. C. Hansch and A. Leo. Substituent Constants for Correlation Analysis in Chemistry and Biology, John Wiley & Sons, New York, Brisbane and Toranto, 1979.

    Google Scholar 

  25. A. L. McClellan. Tables of Experimental Dipole Moments, Rahara Enterprises, El Cerrito, CA, 1979, Vols. 2 and 3.

    Google Scholar 

  26. E. J. Lien (ed.). SAR: Side Effects and Drug Design, Marcel Dekker, New York and Basel, 1987, pp. 332–359.

    Google Scholar 

  27. H. Govers and P. de Voogt. Caculation of molecular volumes from molecular fragments via valence electron indices. Quant. Struct.-Act. Relat. 8:11–16 (1989).

    Google Scholar 

  28. J. G. Keck, P. H. Wang, E. J. Lien, and M. M. C. Lai. Inhibition of murine coronavirus RNA synthesis by hydroxyguanidine derivatives. Virus Res. 14:57–64 (1989).

    Google Scholar 

  29. A. W. Tai. Design of Novel 1-Amino-3-hydroxyguanidine Derivatives Antiviral and Anticancer Agents, Ph.D. dissertation, USC, Los Angeles, 1982.

  30. P. H. Wang. Design, Synthesis, Testing and QSAR Analysis of Substituted Salicylaldehyde Schiff-Bases of 1-Amino-3-hydroxyguanidine Tosylate as New Antiviral Agents Against Coronavirus, Ph.D. dissertation, USC, Los Angeles, 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, PH., Hui, M.B.V., Nandy, P. et al. Quantitative Structure–Activity Relationship (QSAR) Analysis of the Cytotoxicities Of Aminohydroxyguanidine Derivatives and Their Antiviral Activities in Vitro . Pharm Res 8, 1006–1012 (1991). https://doi.org/10.1023/A:1015852907149

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015852907149

Navigation