Skip to main content
Log in

(VO)2P2O7 Catalysed Partial Oxidation of Propane in Dense CO2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The aim of this study was to elucidate the catalytic partial oxidation of propane to oxygenates on vanadyl pyrophosphate ((VO)2P2O7) in dense carbon dioxide acting as a solvent. The reaction was carried out in continuous flow experiments at 673 K at a molar ratio of CO2 :synthetic airpropane of 86131, a residence time of 19 s and sub- to supercritical pressures ranging from 2.4 to 9.7 MPa. The catalytic tests revealed the formation of acrylic and acetic acid besides total oxidation products. The selectivity to acetic acid increased with rising pressure, whereas that of acrylic acid decreased. These results may be attributed to a diverging adsorption of both the oxygenates with pressure, which was investigated by supercritical fluid chromatography. Additionally, critical data of both the reaction feed and the product mixture were determined in a high-pressure optical cell by the opalescence method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Baerns and O.V. Buyevskaya, Erdöl Erdgas Kohle 1 (2000) 25.

    Google Scholar 

  2. M.M. Bettahar, G. Costentin, L. Savary and J.C. Lavalley, Appl. Catal. A: General 48 (1996) 145.

    Google Scholar 

  3. M. Baerns, O.V. Buyevskaya, M. Kubik, G. Maiti, O. Ovsitser and O. Seel, Catal. Today 33 (1997) 85.

    Google Scholar 

  4. Y.-C. Kim, W. Ueda and Y. Moro-oka, Appl. Catal. 70 (1991) 175.

    Google Scholar 

  5. M. Ai, J. Catal. 101 (1986) 389.

    Google Scholar 

  6. M. Ai, Catal. Today 42 (1998) 297.

    Google Scholar 

  7. M.M. Lin, Appl. Catal. A: General 207 (2001) 1.

    Google Scholar 

  8. T. Ushikubo, H. Nakamura, Y. Koyasu and S. Wajiki, EP 0 608 838 A2 (1994).

  9. M.M. Lin and M.W. Linsen, U.S. Patent 6,180,825 (2001).

    Google Scholar 

  10. F. Frusteri, C. Espro, F. Arena, E. Passalacqua, A. Patti and A. Parmaliana, Catal. Today 61 (2000) 37.

    Google Scholar 

  11. P. Kölsch, M. Noack, R. Schäfer, G. Georgi, R. Omorjan and J. Caro, J. Membr. Sci., submitted.

  12. P.G. Jessop and W. Leitner, Chemical Synthesis Using Supercritical Fluids (Wiley-VCH, Weinheim, 1999).

    Google Scholar 

  13. A. Baiker, Chem. Rev. 99 (1999) 453.

    Google Scholar 

  14. R. Wandeler and A. Baiker, CatTech 4 (2000) 34.

    Google Scholar 

  15. P.E. Savage, S. Gopalan, T.I. Mizan, C.J. Martino and E.E. Brock, AIChE J. 41 (1995) 1723.

    Google Scholar 

  16. H. Tiltscher, H. Wolf and J. Schelchshorn, Ber. Bunsenges. Phys. Chem. 88 (1984) 897.

    Google Scholar 

  17. H. Tiltscher and H. Hofmann, Chem. Eng. Sci. 42 (1987) 959.

    Google Scholar 

  18. M.E. Paulaitis and G.C. Alexander, Pure Appl. Chem. 59 (1987) 61.

    Google Scholar 

  19. C.A. Eckert and B.L. Knutson, Fluid Phase Equilib. 83 (1993) 93.

    Google Scholar 

  20. J.F. Brennecke, in: Supercritical Fluid Engineering and Science: Fundamentals and Applications, eds. E. Kiran and J.F. Brennecke (American Chemical Society, Washington, 1993), Ch. 16.

    Google Scholar 

  21. G. Brunner, Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and their Application to Separation Processes (Steinkopf Verlag, Darmstadt, 1994).

    Google Scholar 

  22. R. Gläser and J. Weitkamp, Proc. 5th International Symposium on Supercritical Fluids, Atlanta, Georgia, 8–12 April 2000, electronic release.

  23. M.G. Hitzler and M. Poliakoff, Chem. Commun. (1997) 1667.

  24. K.M. Dooley and F.C. Knopf, Ind. Eng. Chem. Res. 26 (1987) 1910.

    Google Scholar 

  25. G. Jenzer, T. Mallat and A. Baiker, Catal. Lett. 73 (2001) 5.

    Google Scholar 

  26. A.M. Gaffney and J.A. Sofranko, Proc. Symposium on Catalytic Selective Oxidation, Washington, DC, 23–28 August 1992.

  27. B. Kerler and A. Martin, Catal. Today 61 (2000) 9.

    Google Scholar 

  28. A. Martin and B. Kerler, Chem. Eng. Technol. 24 (2001) 41.

    Google Scholar 

  29. A. Martin and B. Kerler, Chem. Eng. Tech. 72 (2000) 382.

    Google Scholar 

  30. B. Kerler, A. Martin, A. Jans and M. Baerns, Appl. Catal. A: General, in press.

  31. G. Centi, Catal. Today 16 (1993) 1.

    Google Scholar 

  32. F.K. Hannour, A. Martin, B. Kubias, B. Lücke, E. Bordes and P. Courtine, Catal. Today 40 (1998) 263.

    Google Scholar 

  33. A. Martin and B. Lücke, Catal. Today 57 (2000) 61.

    Google Scholar 

  34. E. Bordes, Catal. Today 1 (1987) 499.

    Google Scholar 

  35. T. Quandt, PhD Thesis, Ruhr-Universität Bochum, 1999.

  36. H. Berndt, K. Büker, A. Martin, M. Meisel, A. Brückner and B. Lücke, J. Chem. Soc., Faraday Trans. 91 (1995) 725.

    Google Scholar 

  37. A. Martin, S. Mothes and G. Mannsfeld, Fresenius J. Anal. Chem. 364 (1999) 638.

    Google Scholar 

  38. S. Horstmann, K. Fischer and J. Gmehling, Chem. Eng. Tech. 71 (1999) 725.

    Google Scholar 

  39. R.M. Smith, Supercritical Fluid Chromatography (Royal Science of Chemistry, Cambridge, 1993).

    Google Scholar 

  40. C.M. White, Modern Supercritical Fluid Chromatography (Dr. Alfred Hüthig Verlag, Heidelberg, 1988).

    Google Scholar 

  41. R.N. Occhiogrosso and M.A. McHugh, Chem. Eng. Sci. 42 (1987) 2481.

    Google Scholar 

  42. P.H. van Konynenburg and R.L. Scott, Philos. Trans. Roy. Soc. 454 (1980) 298.

    Google Scholar 

  43. K. Nabert and G. Schön, Sicherheitstechnische Kennzahlen brennbarer Gase und Dämpfe (Deutscher Eichverlag, Braunschweig, 1990).

    Google Scholar 

  44. V. Schröder, Federal Institute for Material Research and Testing, personal communication, 2000.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerler, B., Martin, A., Pohl, MM. et al. (VO)2P2O7 Catalysed Partial Oxidation of Propane in Dense CO2. Catalysis Letters 78, 259–265 (2002). https://doi.org/10.1023/A:1014912819219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014912819219

Navigation