Skip to main content
Log in

Organized Monolayers of Biological Macromolecules on Au(111) Surfaces

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Single-crystal electrochemistry and scanning tunneling microscopy directly in aqueous electrolyte solution (in situ STM) are established in physical electrochemistry but new in studies of adsorption and interfacial electrochemistry of biological macromolecules. These high-resolution techniques have now been applied comprehensively to proteins and other biomolecules in recent studies, discussed in this report. Focus is on three systems. The first one is a pair of amino acids, cysteine and cystine. These are strongly adsorbed via thiolate and disulfide, respectively, with identical reductive desorption and in situ STM patterns. Long-range lateral order can be imaged to molecular resolution. The amino acids are also reference molecules for the blue single-copper protein Pseudomonas aeruginosa azurin. This protein assembles in two well-defined orientations. One applies on bare Au(111) to which the protein is linked via its surface disulfide group. This orients the copper center away from the electrode surface. The other mode is by hydrophobic interactions with variable-length alkanethiols self-assembled on Au(111). In this mode the copper center is directed towards the surface. Adsorption and long-range electron tunneling in both modes have been characterized in detail using different electrochemical and spectroscopic techniques, as well as STM. Other data show that penta-(A–T) oligonucleotide adsorbed via a covalently bound thiol linker also displays reductive desorption and in situ STM to molecular resolution. The three systems thus appear to open new perspectives for broader use of high-resolution electrochemical techniques in comprehensive investigations of large biological molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Proteins at Interfaces, Brash, J.L. and Horbett, T.A., Eds., Washington (DC): American Chemical Society, 1987, ACS Symp. Ser., vol. 343.

    Google Scholar 

  2. Proteins at Interfaces II, Horbett, T.A. and Brash, J.L., Eds., Washington (DC): American Chemical Society, 1995, ACS Symp. Ser., vol. 602.

    Google Scholar 

  3. Nagayama, K., Adv. Biophys., 1997, vol. 34, p. 3.

    Google Scholar 

  4. Löschke, M., Curr. Opin. Solid State Mater. Sci., 1996, vol. 2, p. 546.

    Google Scholar 

  5. Biosensors: Fundamentals and Applications, Turner, A.P.F., Karube, I., and Wilson, G.S., Eds., Oxford: Oxford University Press, 1989.

    Google Scholar 

  6. Eggins, B., Biosensors: An Introduction, Chichester: Wiley, 1997.

    Google Scholar 

  7. Tao, N.J., Li, C.Z., and He, H.X., J. Electroanal. Chem., 2000, vol. 492, p. 81.

    Google Scholar 

  8. Guo, L.H. and Hill, H.A.O., Adv. Inorg. Chem., 1991, vol. 36, p. 341.

    Google Scholar 

  9. Armstrong, F.A. and Wilson, G.S., Electrochim. Acta, 2000, vol. 45, p. 2623.

    Google Scholar 

  10. Faraday Discuss., 2000, vol. 116 (special volume on bioelectrochemistry).

  11. Basche, T., Moerner, W.E., Orrit, M., and Wild, U.P., Single–Molecule Optical Detection, Imaging, and Spectroscopy, Weinheim: Wiley–VCH, 1996.

    Google Scholar 

  12. Lu, H.P., Xun, L., and Xie, X.S., Science, 1998, vol. 282, p. 1877.

    Google Scholar 

  13. Ha, T., Ting, A.Y., Liang, J., et al., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, p. 893.

    Google Scholar 

  14. Fan, F.–R.F. and Bard, A.J., Science, 1997, vol. 277, p. 1791.

    Google Scholar 

  15. Templeton, A.C., Wuelfing, W.P., and Murray, R.W., Acc. Chem. Res., 2000, vol. 33, p. 27.

    Google Scholar 

  16. Kneipp, K., Kneipp, H., Kartha, B., et al., Phys. Rev. E, 1998, vol. 57, p. R6281.

    Google Scholar 

  17. Chi, Q., Zhang, J., Friis, E.P., et al., Electrochem. Commun., 1999, vol. 1, p. 91.

    Google Scholar 

  18. Avila, A., Gregory, B.W., Niki, K., and Cotton, T.M., J. Phys. Chem. B, 2000, vol. 104, p. 2759.

    Google Scholar 

  19. Kuznetsov, A.M. and Ulstrup, J., J. Phys. Chem. A, 2000, vol. 104, p. 11531.

    Google Scholar 

  20. Farver, O., Protein Electron Transfer, Bendall, D., Ed., Oxford: BIOS Publ., 1996, p. 161.

    Google Scholar 

  21. Kuznetsov, A.M. and Ulstrup, J., Electrochim. Acta, 2000, vol. 45, p. 2339.

    Google Scholar 

  22. Zhang, J., Chi, Q., Nielsen, J.U., et al., Langmuir, 2000, vol. 16, p. 7229.

    Google Scholar 

  23. Chi, Q., Zhang, J., Nielsen, J.U., et al., J. Am. Chem. Soc., 2000, vol. 122, p. 4047.

    Google Scholar 

  24. Chi, Q., Zhang, J., Andersen, J.E.T., and Ulstrup, J., J. Phys. Chem. B (in press).

  25. Finklea, H.A., Electroanalytical Chemistry, Bard, A.J., Ed., New York: Marcel Dekker, 1996, vol. 19, p. 109.

    Google Scholar 

  26. Song, S., Clark, R.A., Bowden, E.F., and Tarlov, M.J., J. Phys. Chem., 1993, vol. 97, p. 6564.

    Google Scholar 

  27. Chidsey, C.E.D., Science, 1991, vol. 251, p. 919.

    Google Scholar 

  28. Slowinski, K., Chamberlain, R.V., Miller, C.J., and Majda, M., J. Am. Chem. Soc., 1997, vol. 119, p. 11910.

    Google Scholar 

  29. Sek, S., Misicka, A., and Bilewicz, R., J. Phys. Chem. B, 2000, vol. 104, p. 5399.

    Google Scholar 

  30. Smalley, J.F., Feldberg, S.W., Chidsey, C.E.D., et al., J. Phys. Chem., 1995, vol. 99, p. 13141.

    Google Scholar 

  31. Weber, K., Hockett, L., and Creager, S., J. Phys. Chem. B, 1997, vol. 101, p. 8286.

    Google Scholar 

  32. Yoshimura, H., Adv. Biophys., 1997, vol. 34, p. 93.

    Google Scholar 

  33. Müller, D.J., Schabert, F.A., Büldt, G., and Engel, A., Biophys. J., 1995, vol. 68, p. 1681.

    Google Scholar 

  34. Gaigalas, A.K. and Niaura, G., J. Colloid Interface Sci., 1997, vol. 193, p. 60.

    Google Scholar 

  35. Nar, H., Messerschmidt, A., and Huber, R., J. Mol. Biol., 1991, vol. 221, p. 765.

    Google Scholar 

  36. Kraulis, P., J. Appl. Crystallogr., 1991, vol. 24, p. 946.

    Google Scholar 

  37. Hirst, J. and Armstrong, F.A., Anal. Chem., 1998, vol. 70, p. 5062.

    Google Scholar 

  38. Farver, O., Zhang, J., Chi, Q., et al., Proc. Natl. Acad. Sci. USA (in press).

  39. Sikes, H.D., Smalley, J.F., Dudek, S.P., et al., Science, 2001, vol. 291, p. 1519.

    Google Scholar 

  40. Kornyshev, A.A., Kuznetsov, A.M., Nielsen, J.U., and Ulstrup, J., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 141.

    Google Scholar 

  41. Service, F.S., Science, 1998, vol. 282, p. 396.

    Google Scholar 

  42. Southern, E., Mir, K., and Shchepinov, M., Nature Gen. Suppl., 1999, vol. 21, p. 5.

    Google Scholar 

  43. Herne, T.M. and Tarlov, M.J., J. Am. Chem. Soc., 1997, vol. 119, p. 8916.

    Google Scholar 

  44. Steel, A.B., Herne, T.M., and Tarlov, M.J., Anal. Chem., 1998, vol. 70, p. 4670.

    Google Scholar 

  45. Kelly, S.O., Jackson, N.M., Hill, M.G., and Barton, J.K., Angew. Chem. Int. Ed. Engl., 1999, vol. 38, p. 941.

    Google Scholar 

  46. Kelley, S.O., Barton, J.K., Jackson, N.M., et al., Langmuir, 1998, vol. 14, p. 6781.

    Google Scholar 

  47. Wang, J., Rivas, G., Jiang, M., and Zhang, X., Langmuir, 1999, vol. 15, p. 6541.

    Google Scholar 

  48. Wackerbarth, H., Nielsen, J.U., Zhang, J., Andersen, J.E.T., and Ulstrup, J. (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Chi, Q., Nielsen, J.U. et al. Organized Monolayers of Biological Macromolecules on Au(111) Surfaces. Russian Journal of Electrochemistry 38, 68–76 (2002). https://doi.org/10.1023/A:1013790428984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013790428984

Keywords

Navigation