Skip to main content
Log in

Selachian cytogenetics: a review

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The karyotype of Chondrichthyes is still the least investigated among vertebrates. Over the last 40 years, the karyotypes of 63 out of the 1100 known species (5.73%) have been described in literature, namely seven squalomorph, one squatinomorph, 20 galeomorph, 33 batoid and two holocephalian species. Generally, the diploid number ranges from a minimum of 28 to a maximum of 106 elements, with more frequent values observed between 50 and 100 chromosomes. None of the four superorders is characterized by a peculiar chromosome set or morphology; the number of uniarmed and biarmed elements is variable in all the karyotypes, and microchromosomes are often present. The general trend in all groups seems to be a progressive reduction of the telocentric chromosome number in the most specialized species, followed by the loss of the microchromosomes. Polyploidy, followed by diploidization events and Robertsonian rearrangements, might have played a key role in the karyological evolution of elasmobranch fish. Chondrichthyes have the largest genome sizes among vertebrates, with the exception of dipnoans and urodeles. In the whole class, the species examined vary greatly in size, from 3 to 34 pg/N: the lowest values have been observed in holocephalians, while galeoids and batoids have a DNA amount ranging from 5 to 15 pg/N. Squaloids show heterogeneous DNA amounts, ranging from 8 to 34 pg/N. In more recent years, karyological studies have provided new data on the characterization of selachian karyotypes by C-banding, NOR staining, restriction enzymes in situ digestion and FISH with specific DNA probes, such as telomeric and SINE sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amemiya, C.T. & J.R. Gold, 1988. Chromosomal NORs as taxonomic and systematic characters in North American cyprinid fish. Genetica 76: 81–90.

    Google Scholar 

  • Asahida, T. & H. Ida, 1989. Karyological notes on four sharks in the order Carcharhiniformes. Jap. J. Ichthyol. 36: 275–280.

    Google Scholar 

  • Asahida, T. & H. Ida, 1990. Karyotypes of two rays, Torpedo tokionis and Dasyatis matsubarai, and their systematic relationships. Jap. J. Ichthyol. 37: 71–75.

    Google Scholar 

  • Asahida, T. & H. Ida, 1995. Karyotype and cellular DNA content of a guitarfish, Rhinobatos schlegelii. La Kromosomo II 79-80: 2725–2730.

    Google Scholar 

  • Asahida, T., H. Ida & K. Hayashizaki, 1995. Karyotypes and cellular DNA contents of some sharks in the order Carcharhiniformes. Jap. J. Ichthyol. 42: 21–26.

    Google Scholar 

  • Asahida, T., H. Ida & S. Inoue, 1987. Karyotypes of three rays in the order Myliobatiformes. Jap. J. Ichthyol. 33: 426–430.

    Google Scholar 

  • Asahida, T., H. Ida & T. Inoue, 1988. Karyotypes and cellular DNA contents of two sharks in the family Scyliorhinidae. Jap. J. Ichthyol. 35: 215–219.

    Google Scholar 

  • Asahida, T., H. Ida, H. Terashima & H.Y. Chang, 1993. The karyotype and cellular DNA content of a ray, Mobula japonica. Jap. J. Ichthyol. 40: 317–322.

    Google Scholar 

  • Bernardi, G. & G. Bernardi, 1990. Compositional patterns in the nuclear genomes of cold-blooded vertebrates. J. Mol. Evol. 31: 265–281.

    Google Scholar 

  • Cappetta, H., 1987. Chondrichthyes II: mesozoic and cenozoic elasmobranchii, pp 1–193 in Handbook of Paleoichthyology, Vol. 3B, edited by H.P. Schultze. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Cavalier-Smith, T. & M.J. Beaton, 1999. The skeletal function of non-genic nuclear DNA: new evidence from ancient cell chimaeras. Genetica 106: 3–13.

    Google Scholar 

  • Cavalier-Smith, T., 1982. Skeletal DNA and the evolution of genome size. Ann. Rev. Biophys. Bioeng. 11: 273–302.

    Google Scholar 

  • Chang, H.-Y., T.-K. Sang, K.-Y. Jan & C.-T. Chen, 1995. Cellular DNA contents and cell volumes of batoids. Copeia 3: 571–576.

    Google Scholar 

  • Compagno, L.J.V., 1999. Systematics and body form, pp 1–42 in Sharks, Skates and Rays, edited by W.C. Hamlett. The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Compagno, L.J.V., 1973. Interrelationships of living Elasmobranchs, pp 15–61 in Interrelationships of Fishes, edited by P.H. Greenwood, R.S. Miles & C. Patterson. Academic Press, New York.

    Google Scholar 

  • Compagno, L.J.V., 1977. Phyletic relationships of living sharks and rays. Ann. Zool. 17: 303–322.

    Google Scholar 

  • Compagno, L.J.V., 1984. Sharks of the World. FAO Species Catalogue, United Nations Food and Agriculture Organization, Rome.

    Google Scholar 

  • Compagno, L.J.V., 1988. Sharks of the Order Carcharhiniformes. Princeton University Press, Princeton.

    Google Scholar 

  • De Carvalho, M.R., 1996. Higher-level elasmobranch phylogeny, basal squalians, and paraphyly, pp. 35–62 in Interrelationships of Fishes, edited by M.L.J. Stiassny, L.R. Parenti & G.D. Johnson. Academic Press, San Diego.

    Google Scholar 

  • Donahue, W.H., 1974. A karyotypic study of three species of Rajiformes (Chondrichthyes, Pisces). Can. J. Genet. Cytol. 16: 203–211.

    Google Scholar 

  • Garagna, S., C.A. Redi, E. Capanna, N. Andayani, R.M. Alfano, P. Doi & G. Viale, 1993. Genome distribution, chromosomal allocation, and organization of the major and minor satellite DNA in 11 species and subspecies of the genus Mus. Cytogenet. Cell Genet. 64: 247–255.

    Google Scholar 

  • Gaudin T.J., 1991. A re-examination of elasmobranch monophyly and chondrichthyan phylogeny. N. Jahrb. Geol. Palaontol. Abhandl. 182: 133–160.

    Google Scholar 

  • Goto, M., 1985. Evolution and adaptation of elasmobranch thooth. Rep. Japanese Group for Elasmobranch Studies 21: 28.

    Google Scholar 

  • Hinegardner R.T., 1976. The cellular DNA content of sharks, rays and some other fishes. Comp. Biochem. Physiol. 55B: 367–370.

    Google Scholar 

  • Ida, H., I. Sato & N. Miyawaki, 1985. Karyotypes of two species in the order Torpediniformes. Jap. J. Ichthyol. 32: 107–111.

    Google Scholar 

  • Ida, H., T. Asahida, K. Yano & S. Tanaka, 1986. Karyotypes of two sharks, Chlamydoselachus anguineus and Heterodontus japonicus, and their systematic implications, pp. 158–163 in Indo Pacific Fish Biology, edited by T. Uyeno, R. Arai, T. Taniuchi & K. Matsuura. Ichthyol. Soc. Of Japan, Tokyo.

    Google Scholar 

  • Kendall, C., S. Valentino, A.B. Bodine & C.A. Luer, 1992. Flow cytometric DNA analysis of nurse shark, Ginglymostoma cirratum (Bonaterre) and clearnose skate, Raja eglanteria (Bosc) peripheral red blood cells. J. Fish Biol. 41: 123–129.

    Google Scholar 

  • Kendall, C., S. Valentino, A.B. Bodine & C.A. Luer, 1994. Triploidy in a nurse Shark, Ginglymostoma cirratum. Copeia 1994: 825–827.

    Google Scholar 

  • Kikuno, T. & Y. Ojima, 1987. A Karyotypic studies of a guitar fish, Rhinobatos hyinnicephalus Richardson (Pisces, Rajiformes). La Kromosomo II-47–48: 1538–1544.

    Google Scholar 

  • Lozano, R., C. Ruiz Rejòn & M. Ruiz Rejòn, 1991. An analysis of coho salmon chromatin by means of C-banding, Agand fluorochrome staining, and in situ digestion with restriction endonucleases. Heredity 66: 403–409.

    Google Scholar 

  • Maddock, M.B. & F.J. Schwartz, 1996. Elasmobranch cytogenetics: methods and sex chromosomes. Bull. Mar. Sci. 58: 147–155.

    Google Scholar 

  • Maisey, J.G. & K.E. Wolfram, 1984. Notidanus, pp. 170–180 in Living Fossils. Springer-Verlag, New York.

    Google Scholar 

  • Maisey, J.G., 1982. The anatomy and interrelationships of Mesozoic Hybodont sharks. Amer. Mus. Novit. 2724: 1–48.

    Google Scholar 

  • Maisey, J.G., 1989. Hamiltonichthys mapesi g. & sp. Nov. (Chondrichthyes; Elasmobranchii), from the Upper Pennsylvanian of Kansas. Am. Mus. Novit. 2931: 1–42.

    Google Scholar 

  • Makino, S., 1937. The chromosomes of two elasmobranch fishes. Cytologia 2: 867–876.

    Google Scholar 

  • Martin, A.P., G.J.P. Naylor & S.R. Palumbi, 1992. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357: 153–155.

    Google Scholar 

  • Martinez, P., A. Vinas, C. Bouza, J. Castro & L. Sanchez, 1991. Quantitative analysis of the variability of nucleolar organizer regions in Salmo trutta. Genome 36: 1119–1123.

    Google Scholar 

  • Matthey, R., 1937. La formule chromosomiale du Selacien Scyliorhinus catula. C. R. Seanc. Soc. Biol. 126: 388–389.

    Google Scholar 

  • McEachran, J.D., K.A. Dunn & T. Miyake, 1996. Interrelationships of the batoid fishes (Chondrichthyes: Batoidei), pp. 63–84 in Interrelationships of Fishes, edited by M.L.J. Stiassny, L.R. Parenti & G.D. Johnson. Academic Press, San Diego.

    Google Scholar 

  • Mirsky, A.E. & H. Ris, 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J. Gen. Physiol. 34: 451–462.

    Google Scholar 

  • Morescalchi, A., 1970. Karyology and vertebrate phylogeny. Boll. Zool. 37: 1–28.

    Google Scholar 

  • Morescalchi, A., 1977. Phylogenetic aspects of karyological evidence, pp. 149–167 in Major Patterns in Vertebrate Evolution, edited by M.K. Hecht, P.C. Goody & B.M. Hecht. Pl. Publ. Corp., New York.

    Google Scholar 

  • Nakaja, K., 1975. Taxonomy, comparative anatomy and phylogeny of Japanese catsharks, Scyliorhinidae. Mem. Fac. Fish. Hokkaido Univ. 23: 1–94.

    Google Scholar 

  • Nishida, K., 1990. Phylogeny of the suborder Myliobatidoidei. Mem. Fac. Fish. Hokkaido U. 37: 1–108.

    Google Scholar 

  • Nogusa, S., 1960. A comparative study of the chromosomes of fishes with particular considerations on taxonomy and evolution. Mem. Hyogo Univ. Agric. 3: 1–62.

    Google Scholar 

  • Nygren, A. & M. Jahnke, 1972. Microchromosomes in primitive fishes. Swed. J. Agric. Res. 2: 229–238.

    Google Scholar 

  • Nygren, A., B. Nilsson & M. Jahnke, 1971. Cytological study in Hypotremata and Pleurotremata (Pisces). Hereditas 59: 275–282.

    Google Scholar 

  • Odierna, G., G. Aprea, O.J. Arribas, T. Capriglione, V. Caputo & E. Olmo, 1996. The karyology of the iberian rock lizards. Herpetologica 52: 542–550.

    Google Scholar 

  • Ogiwara, I., M. Miya, K. Ohshima & N. Okada, 1999. Retropositional parasitism of SINEs on LINEs: identification of SINEs and LINEs in elasmobranchs. Mol. Biol. Evol. 16: 1238–1250.

    Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer Verlag, New York.

    Google Scholar 

  • Ohno, S., J. Muramoto, C. Stenius, L. Christian, W.A. Kittrel & N.B. Atkin, 1969. Microchromosomes in holocephalian, chondrostean and holostean fishes. Chromosoma 26: 35–40.

    Google Scholar 

  • Olmo, E., V. Stingo, G. Odierna & T. Capriglione, 1982b. Sequence organization in the DNA of three selachians. Experientia 38: 339–340.

    Google Scholar 

  • Olmo, E., V. Stingo, O. Cobror, T. Capriglione & G. Odierna, 1982a. Repetitive DNA and polyploidy in selachians. Comp. Biochem. Physiol. B 73: 739–745.

    Google Scholar 

  • Ozouf-Costaz, C., E. Pisano, C. Bonilio & R. Williams, 1996. Ribosomal RNA location in the Antarctic fish Champsocephalus gunnati (Notothenioidei, Channichthyidae) using banding and fluorescence in situ hybridization. Chromosome Res. 4:557–561.

    Google Scholar 

  • Pardini, A.T., C.S. Jones, M.C. School & L.R. Noble, 2000. Isolation and characterization of dinucleotide microsatellite loci in the Great White Shark, Carcharodon carcharias. Mol. Ecol. 9: 1176–1178.

    Google Scholar 

  • Pedersen, R.A., 1971. DNA content ribosomal gene multiplicity and cell size in fish. J. Exp. Zool. 177: 65–78.

    Google Scholar 

  • Phillips, R.B., K.A. Pleyte & P.E. Ihssen, 1989. Patterns of chromosomal nucleolar organizer region (NOR) variation in fishes of the genus Salvelinus. Copeia 1989: 47–53.

    Google Scholar 

  • Rocco, L., V. Stingo & M. Bellitti, 1996. Cloning and characterization of a repetitive DNA detected by Hind III in the genome of Raja montagui (Batoidea, Chondrichthyes). Gene 176: 185–189.

    Google Scholar 

  • Rodrigues, E. & M.J. Collares-Pereira, 1996. NOR polymorphism in the Iberian species Chondrostoma lusitanicum (Pisces: Cyprinidae). Genetica 98: 59–63.

    Google Scholar 

  • Schmid, M., 1982. Chromosome banding in Amphibia. XII. Analysis of the structure and variability of NORs in Anura. Chromosoma 87: 327–344.

    Google Scholar 

  • Schwartz, F.J. & M.B. Maddock, 1986. Comparisons of karyotypes and cellular DNA contents within and between major lines of elasmobranch p. 148 in Indo-Pacific Fish Biology, edited by T. Uyeno, R. Arai, T. Tuniuchi and K. Matsuura. Ichthyological Society Japan, Tokyo.

    Google Scholar 

  • Shimoda, N., M. Chevrette, M. Ekker, J. Kikuchi, Y. Hotta & H. Okamoto, 1996. Mermaid: a family of short interspersed repetitive elements widespread in vertebrates. Biochem. Biophysic. Res. Comm. 220: 226–232.

    Google Scholar 

  • Shirai, S., 1996. Phylogenetic interrelationships of neoselachians (Chondrichthyes, Euselachii), pp. 9–34 in Interrelationships of Fishes, edited by M.L.J. Stiassny, L.R. Parenti & G.D. Johnson. Academic Press, San Diego.

    Google Scholar 

  • Sidow, A., 1996. Gen(om)e duplications in the evolution of early vertebrates. Curr. Opin. Genet. Dev. 6: 715–722. Review.

    Google Scholar 

  • Stingo, V. & L. Rocco, 1991. Chondrichthyan cytogenetics: a comparison with Teleosteans. J. Mol. Evol. 33: 76–82.

    Google Scholar 

  • Stingo, V. & T. Capriglione, 1986. DNA and chromosomal evolution in cartilaginous fish, pp. 140–147 in Indo-Pacific Fish Biology, edited by T. Ueno, R. Arai, T. Taniuchi & K. Matsuura. Ichthyological Society Japan, Tokyo.

    Google Scholar 

  • Stingo, V., 1976. Cariologia di due torpedini italiane. Boll. Zool. 43: 406–407.

    Google Scholar 

  • Stingo, V., 1978. Ulteriori dati cariologici sui selaci italiani. Boll. Zool. 45: 243.

    Google Scholar 

  • Stingo, V., 1979. New developments in vertebrate citotaxonomy. II. The chromosomes of the cartilaginous fishes. Genetica 50: 227–239.

    Google Scholar 

  • Stingo, V., L. Rocco & R. Improta, 1989b. Chromosome markers and karyology of Selachians. J. Exp. Zool. suppl 2: 175–185.

    Google Scholar 

  • Stingo, V., L. Rocco, G. Odierna & M. Bellitti, 1995. NOR and heterochromatin analysis in two cartilaginous fishes by C-, Ag-and RE (restriction endonuclease)-banding. Cytogenet. Cell Genet. 71: 228–234.

    Google Scholar 

  • Stingo, V., M.H. Du Buit & G. Odierna, 1980. Genome size of some selachian fishes. Boll. Zool. 47: 129–137.

    Google Scholar 

  • Stingo, V., T. Capriglione, L. Rocco, R. Improta & A. Morescalchi, 1989a. Genome size and A-T rich DNA in Selachians. Genetica 79: 197–205.

    Google Scholar 

  • Szarski, H., 1976. Cell size and nuclear DNA content in Vertebrates. Int. Rev. Cytol. 44: 93–111.

    Google Scholar 

  • Vialli, M., 1957. Volume et contenu en ADN par noyau, in Cytochemical methods with quantitative aims. Exp. Cell Res. (4suppl.): 284–293.

    Google Scholar 

  • White, M.J.D., 1973. Animal cytology and evolution. Cambridge Univ. Press, London, 3rd edn.

    Google Scholar 

  • Yabu, H. & K. Ishii, 1984. Chromosomes of the great blue shark Prionace glauca (Linnaeus). Bull. Japan. Soc. Sci. Fish. 50: 7–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stingo, V., Rocco, L. Selachian cytogenetics: a review. Genetica 111, 329–347 (2001). https://doi.org/10.1023/A:1013747215866

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013747215866

Navigation