Skip to main content
Log in

Kinetic Analysis Crystallization of α-Al2O3 by Dynamic DTA Technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The phase transformation of seeded (5 mass% Fe2O3 as a Fe(NO3)3 solution) boehmite derived alumina gel to α-Al2O3 was studied with DTA technique and compared with unseeded and α-Al2O3 seeded boehmite gels. Data for kinetic analysis of α-Al2O3 crystallization were obtained from quantitative DTA curves. The kinetic parameters were analysed by traditional Kissinger analysis and Friedman and Ozawa-Flynn-Wall methods using the Netzsch Thermokinetics program. Results of the comparison of values of activation energies for all three gels and methods are the process of α-Al2O3 transformation for originally γ-AlOOH/Fe(NO3)3 gels goes like that of unseeded boehmite gels,only under lower temperatures (lower about 200°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. K. Iler, J. Am. Ceram. Soc., 44 (1961) 618.

    Article  CAS  Google Scholar 

  2. K. Wefers and Ch. Misra, Oxides and Hydroxides of Aluminium, Alcoa Laboratories, Pittsburgh, PA, 1987.

    Google Scholar 

  3. G. Ervin, Acta Crystallogr., 5 (1952) 103.

    Article  CAS  Google Scholar 

  4. S. J. Bennsion and M. P. Harmer, Commun. Am. Ceram. Soc., (May 1983) C-90.

  5. G. L. Messing and M. Kumagai, Am. Ceram. Soc. Bull., 73 (1994) 88.

    CAS  Google Scholar 

  6. G. L. Messing and M. Kumagai, J. Am. Ceram. Soc., 72 (1989) 40.

    Article  CAS  Google Scholar 

  7. Y. Suwa, R. Roy and S. Komarneni, Mat. Sci. Eng., 83 (1986) 151.

    Article  CAS  Google Scholar 

  8. W. Raja Rao and I. B. Cutler, J. Am. Ceram. Soc., 56 (1973) 588.

    Article  Google Scholar 

  9. J. L. Mcardle and G. L. Messing, Adv. Ceram. Mat., 3 (1988) 387.

    CAS  Google Scholar 

  10. L' Bača, J. Lipka, I. Tóth and L. Pach, Ceramics-Silikáty, 45 (2001) 9.

  11. A. D. Polli, F. E. Lange, C. G. Levi and J. Mayer, J. Am. Ceram. Soc., 79 (1996) 55.

    Article  Google Scholar 

  12. J. Kákoš L'. Bača, P. Veis and L. Pach, J. Sol-Gel Sci. Technology, 21 (2001) 167.

    Article  Google Scholar 

  13. M. Pyzalski and M. Wojcik, J. Thermal Anal., 36 (1990) 2147.

    Article  CAS  Google Scholar 

  14. R. B. Bagwell and G. L. Messing, J. Am. Ceram. Soc., 82 (1999) 825.

    Article  CAS  Google Scholar 

  15. T. Tsuchida, R. Furuichi, T. Ishi and K. Itoh, Thermochim. Acta, 64 (1983) 337.

    Article  CAS  Google Scholar 

  16. T. Nishio and Y. Fujiki, J. Mat. Sci., 29 (1994) 3408.

    Article  CAS  Google Scholar 

  17. C. J. P. Steiner, D. P. H. Hasselman and R. M. Spriggs, J. Am. Ceram. Soc., 54 (1971) 412.

    Article  CAS  Google Scholar 

  18. B. E. Yoldas, Ceram. Bull., 54 (1975) 286.

    CAS  Google Scholar 

  19. S. J. Wilson and J. D. McConnell, J. Solid State Chem., 34 (1980) 315.

    Article  CAS  Google Scholar 

  20. H. Schaper and L. L. Van Reijen, Thermochim. Acta, 77 (1984) 383.

    Article  CAS  Google Scholar 

  21. R. A. Shelleman and G. L. Messing, J. Am. Ceram. Soc., 71 (1988) 317.

    Article  CAS  Google Scholar 

  22. J. Plewa, C. Magerkurth and H. Altenburg, Steinfurter Keramik-Seminar zur Herstellung von Hochreinem Aluminiumoxid, 18-19, Dez., Steinfurt 1996.

  23. K. Okada, A. Hattori, T. Taniguchi, A. Nukui and R. N. Das, J. Am. Ceram. Soc., 83 (2000) 928.

    Article  CAS  Google Scholar 

  24. H. E. Kissinger, J. Research Natl. Bur. Standards, 57 (1956) 217.

    CAS  Google Scholar 

  25. J. Opfermann, Instrument Manual of the Program ‘Netzsch Thermokinetics’, 2000.

  26. H. L. Friedman, J. Polymer Lett., 4 (1966) 323.

    Article  Google Scholar 

  27. T. Ozawa, Bull. Chem. Soc. Japan, 38 (1965) 1881.

    CAS  Google Scholar 

  28. J. Flynn and L. A. Wall, Polym. Lett., 4 (1966) 232.

    Article  Google Scholar 

  29. C. D. Doyle, J. Appl. Anal., 27 (1962) 639.

    Google Scholar 

  30. J. L. McArdle and G. L. Messing, J. Am. Ceram. Soc., 76 (1993) 214.

    Article  CAS  Google Scholar 

  31. G. L. Messing and M. Kumagai, Am. Ceram. Soc. Bul., 73 (1994) 88.

    CAS  Google Scholar 

  32. G. L. Messing, R. A. Shelleman and J. L. McArdle, Mater. Res. Soc. Symp. Proc., 73 (1986) 471.

    CAS  Google Scholar 

  33. Y. Suwa, S. Komarneni and R. Roy, Commun. Am. Ceram. Soc., 68 (1985) C-238.

    CAS  Google Scholar 

  34. Y. Suwa, S. Komarneni and R. Roy, J. Mater. Sci. Lett., 5 (1986) 21.

    Article  CAS  Google Scholar 

  35. M. Kumagai and G. L. Messing, Commun. Am. Ceram. Soc., 67 (1984) C-230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bača, L., Plewa, J., Pach, L. et al. Kinetic Analysis Crystallization of α-Al2O3 by Dynamic DTA Technique. Journal of Thermal Analysis and Calorimetry 66, 803–813 (2001). https://doi.org/10.1023/A:1013148223203

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013148223203

Navigation