Skip to main content
Log in

Biclosed Binary Relations and Galois Connections

  • Published:
Order Aims and scope Submit manuscript

Abstract

Given two closure spaces (E,ϕ) and (E′,ϕ′), a relation RE×E′ is said biclosed if every row of its matrix representation corresponds to a closed subset of E′, and every column to a closed subset of E. An isomorphism between, on the one hand, the set of all biclosed relations and, on the other hand, the set of all Galois connections between the two lattices of closed sets is established. Several computational applications are derived from this result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandelt, H.-J. (1977) Tight residuated mappings and d-extensions, in Universal Algebra, Esztergom (Hungary), 1977, Colloq. Math. Soc. János Bolyai 29, pp. 61–72.

  2. Barbut, M. (1965) Note sur l'algèbre des techniques d'analyse hiérarchique, in B. Matalon (ed.), L'analyse hiérarchique, Gauthier-Villars, Paris.

    Google Scholar 

  3. Barbut, M. and Monjardet, B. (1970) Ordre et classification, algèbre et combinatoire, Hachette, Paris.

    Google Scholar 

  4. Benado, M. (1973) Ensembles ordonnés et fonctions monotones, Rev. Fac. Ci. Univ. Lisboa (II-A) 14, 165–194.

    Google Scholar 

  5. Birkhoff, G. (1933) On the combination of subalgebras, Proc. Cambridge Philos. Soc. 29, 441–464.

    Google Scholar 

  6. Birkhoff, G. (1967) Lattice Theory, 3rd edn, Amer. Math. Soc., Providence, RI.

    Google Scholar 

  7. Blyth, T. S. (1984) Residuation mappings, Order 1, 187–204.

    Google Scholar 

  8. Blyth, T. S. and Janowitz, M. F. (1972) Residuation Theory, Pergamon Press, Oxford.

    Google Scholar 

  9. Diday, E. (1988) The symbolic approach in clustering and related methods of data analysis: the basic choices, in H. H. Bock (ed.), Classification and Related Methods od Data Analysis, North-Holland, Amsterdam, pp. 673–683.

    Google Scholar 

  10. Dubreil, P. and Croisot, R. (1954) priétés générales de la résiduation en liaison avec les correspondances de Galois, Collect. Math. 7, 193–203.

    Google Scholar 

  11. Everett, C. J. (1944) Closure operators and Galois theory in lattices, Trans. Amer. Math. Soc. 55, 514–525.

    Google Scholar 

  12. Ganter, B. and Wille, R. (1998) Appendix H. Applied lattice theory: formal concept analysis, in G. Grätzer (ed.), General Lattice Theory, 2nd edn, Birkhäuser, Basel, pp. 591–605.

    Google Scholar 

  13. Ganter, B. and Wille, R. (1999) Formal Concept Analysis, Springer, New York.

    Google Scholar 

  14. Godin, R., Missaoui, R. and Alaoui, H. (1991) Learning algorithms using a Galois lattice structure, in Proceedings of the 1991 IEEE Int. Conf. for AI, San Jose, CA, pp. 22–29.

  15. Janowitz, M. F. (1978) An order theoretic model for cluster analysis, SIAM J. Appl. Math. 37, 55–72.

    Google Scholar 

  16. Keshet, R. (2000) Mathematical morphology on complete semilattices and its applications to image processing, Fund. Inform. 41, 33–56.

    Google Scholar 

  17. Leclerc, B. (1991) Aggregation of fuzzy preferences: a theoretic Arrow-like approach, Fuzzy Sets and Systems 43(3), 291–309.

    Google Scholar 

  18. Leclerc, B. (1994) The residuation model for the ordinal construction of dissimilarities and other valued objects, in B. Van Cutsem (ed.), Classification and Dissimilarity Analysis, Springer-Verlag, New York, pp. 149–172.

    Google Scholar 

  19. Liquière, M. and Sallantin, J. (1998) Structural machine learning with Galois lattices and graphs, International Conference on Machine Learning, ICML98, pp. 1–9.

  20. MacNeille, H. M. (1937) Partially ordered sets, Trans. Amer. Soc. 12, 116–160.

    Google Scholar 

  21. Markowsky, B. (1980) The representation of posets and lattices by sets, Algebra Universalis 11, 173–192.

    Google Scholar 

  22. Öre, O. (1944) Galois connections, Trans. Amer. Math. Soc. 55, 494–513.

    Google Scholar 

  23. Polat, N. and Flament, C. (1980) Applications galoisiennes proches d'une application entre treillis, Math. Sci. Hum. 70, 33–49.

    Google Scholar 

  24. Raney, G. N. (1960) Tight Galois connections and complete distributivity, Trans. Amer. Math. Soc. 97, 418–426.

    Google Scholar 

  25. Shmuely, Z. (1974) The structure of Galois connections, Pacific J. Math. 54, 209–225.

    Google Scholar 

  26. Waiyamai, K., Taouil, R. and Lakhal, L. (1998) Towards an object database approach for managing concept lattice based applications, in 16th Int. Conf. on Conceptual Modeling (ER'97), Los Angeles, CA, Lectures Notes in Comput. Sci. 1331, Springer-Verlag, Berlin, pp. 299–312.

    Google Scholar 

  27. Wille, R. (1982) Restructuring lattice theory: an approach based on hierarchies of concepts, in I. Rival (ed.), Ordered Sets, D. Reidel, Dordrecht, pp. 445–470.

    Google Scholar 

  28. Yazi, M. (1998) Applications à seuils et applications galoisiennes; étude et usage en analyse des données symboliques, PhD Thesis, EHESS, Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domenach, F., Leclerc, B. Biclosed Binary Relations and Galois Connections. Order 18, 89–104 (2001). https://doi.org/10.1023/A:1010662327346

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010662327346

Navigation