Skip to main content
Log in

G-protein and Membrane Signaling in Cardiovascular Disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Guanine nucleotide regulatory proteins (G-proteins) play a key role in the regulation of various signal transduction systems, which are implicated in the modulation of a variety of physiological functions such as platelet functions, including platelet aggregation, secretion, and clot formation, and cardiovascular functions, including arterial tone and reactivity. Several abnormalities in adenylyl cyclase activity, cAMP levels, and G-protein levels have shown to be responsible for the altered cardiac performance and vascular functions observed in cardiovascular disease states. The enhanced or unaltered levels of inhibitory G-proteins(Giα-2 and Giα-3) and mRNA have been reported in different models of hypertension, whereas Gsα levels were shown to be unaltered. These changes in G-protein were associated with functions. The enhanced levels of Giα proteins precede the development of blood pressure and suggest that over expression of Gi proteins may be one of the contributing factors for the pathogenesis of hypertension. On the other hand, the levels of Gsα and not of Giα proteins were decreased in volume- or pressure-overload hypertrophy. The responsiveness of adenylyl cyclase to β-adrenergic agonists was also attenuated. Similarly, is chemia was shown to be associated with decreased, increased,or unaltered levels of Gsα, with decreased levels of Giα, and with decreased responsiveness of adenylyl cyclase to various stimuli such as β-adrenergic agonists, guanine nucleotides, forskolin, etc. Thus,the altered levels of G-proteins and cAMP levels may be responsible for the impaired cardiovascular functions observed in hypertension, hypertrophy,and cardiac failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rodbell M, Krans HM, Pohl SL, Birnbaumer L. The glucagon-sensitive adenylyl cyclase system in plasma membranes of liver cffects of guanyl nucleotides on binding 125Iglucagon. J Biol Chem 1971 ; 246 : 1872–1876 .

    PubMed  CAS  Google Scholar 

  2. Litosch I, Wallis C, Foin JN. 5-hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a ro in coupling receptor activation to phosphoinositide breakdown. J Biol Chem 1985;260(9):5464–5471.

    PubMed  CAS  Google Scholar 

  3. Cockroft S, Gomperts BD. Role of guanine nucleotide binding protein in the activation of phosphoinositide phosphodiesterase. Nature 1985;314:534–536.

    Article  Google Scholar 

  4. Pfaffmger PJ, Martin JM, Hunter DD. Nathanson NM, Hille B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 1985;317:536–538.

    Article  Google Scholar 

  5. Breitwieser GE, Szabo G. Uncoupling of cardiac muscarinic and beta-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 1985;317:538–540.

    Article  PubMed  CAS  Google Scholar 

  6. Gilman AG. G proteins and dual control of adenylyl cyclase. Cell 1984;36:577–579.

    Article  PubMed  CAS  Google Scholar 

  7. Stryer L, Bourne HR. G-prokins: a family of signal transducers. Ann Rev Cell Biol 1986;2:391–419.

    PubMed  CAS  Google Scholar 

  8. Spiegel AM. Signal transduction by guanine nucleotide binding proteins. Mol Cell Endowino1 1987;49:1–16.

    Article  CAS  Google Scholar 

  9. Murakami T, Yasuda H. Rat heart cell membranes contain three substrate for cholera toxin-catalyzed ADP-ribosylation and a single substrate for pertussis toxin-catalyzed ADP-ribosylation, Biochem Biophys Ree Commun 1988; 138:1355–1361.

    Article  Google Scholar 

  10. Robishaw JD, Smigel MD, Gilman AG. Molecular basis for two forms of the G protein that stimulates adenylate cyclase.J Biol Chem 1986; 261:9587–9590.

    PubMed  CAS  Google Scholar 

  11. Bray P, Carter A, Simons C, Guo V, Puckett C, Kamholz J, Spiegel A, Nirenberg M. Human cDNA clones for four spe cies of G alpha s signal transduct protein. Proc Natl Acad Sci USA 1986; 83:8893–8897.

    Article  PubMed  CAS  Google Scholar 

  12. Itoh H, Kozasa T, Nagata S, Nakamura S, Katada T, Ui M, Iwai S, Ohtsuka E, Kawasaki H, Suzuki K. Molecular cloning and sequence determination of cDNAs for alpha of the guanine nucleotide-binding proteins Gs, Gi and Go from rat brain. Proc Natl Acad Sci USA 1986; 83:3776–3786.

    Article  PubMed  CAS  Google Scholar 

  13. Jones DT, Reed RR. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 1987; 262:14241–14249.

    PubMed  CAS  Google Scholar 

  14. Itoh H, Toyama RI, Kozasa TI, Tsukamoto TI, Matsuoka M, Kazirory. Presence of three distinct molecular species of G protein: a subunit structure of rat cDNA and human genomic DNAs. J Biol Chem 1988; 263:6656–6664.

    PubMed  CAS  Google Scholar 

  15. Wong YH, Conklin BB, Bourne HR. Gz-mediated hormonal inhibition of cyclic AMP accumulation. Science 1992; 255:339–342.

    PubMed  CAS  Google Scholar 

  16. Brown AM, Birnbaumer L. Direct G protein gating of ion channels. Am J Physiol 1988; 254:H401–H410.

    PubMed  CAS  Google Scholar 

  17. Simon MI, Strathmann MP, Gantam N. Diversity of G proteins in signal transduction. Science 1991; 252:802–808.

    PubMed  CAS  Google Scholar 

  18. Cali JJ, Balcueva EA, Rybalkin I, Robishaw JD. Selective tissue distribution of G protein gamma subunits, including a new form of the gamma subunits identified by cDNA cloning. J Biol Chem 1992; 267:24023–24027.

    PubMed  CAS  Google Scholar 

  19. Tang WJ, Gilman G. Type-specific regulation of adenylyl cyclase by G protein beta gamma submits. Science 1991; 254:1500–1503.

    PubMed  CAS  Google Scholar 

  20. Wickman KD, Iniguez Lluhl JA, Davenport PA, Taussig R, Krapivinsky GB, Linder ME, Gilman AG, Clapham DE. Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature 1994; 368:255–257.

    Article  Google Scholar 

  21. De Vivo M, Iyengar RG. G-protein pathways: signal processing by effectors. Mol Cell Endocrinol 1994; 100:65–70.

    Article  CAS  Google Scholar 

  22. Katsushika S, Chen L, Kawabe J, Nilakantan R, Halnon NJ, Homcy CJ, Ishikawa Y. Cloning and characterization of a sixth adenylyl cyclae isoform: types V and VI constitute a subgrap within the mammalian adenylyl cyclase family. Proc Natl Acad Sci USA 1992; 89:8774–8778.

    Article  PubMed  CAS  Google Scholar 

  23. Premont RT, Chen J, Ma HW, Ponnapalli M, Iyengar R. Two members of a widely expressed subfamily of hormonestimulated adenylyl cyclases. Proc Natl Acad Sci USA 1992; 89:9809–9813.

    Article  PubMed  CAS  Google Scholar 

  24. Toro MJ, Montoya E, Bimbaumer L. Inhibitory regulation of adenylyl cyclases. Evidence inconsistent with beta gammacomplexes of Gi proteins mediating hormonal effects by interfering with activation of Gs. Mol Endocrinol 1987; 1: 669–676.

    Article  PubMed  CAS  Google Scholar 

  25. Taussig R, Quarmby LM, Gilman AG. Regulation of purified type I and type II adenylyl cyclases by a G protein beta gamma subunits. J Biol Chem 1993; 268:9–12.

    PubMed  CAS  Google Scholar 

  26. Cassel D, Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 1978; 75:2669–2673.

    Article  PubMed  CAS  Google Scholar 

  27. Hewlett G, Gronier MJ, Mas J, Anderson H, Myers GA, Pearson RD. Pertussis toxin lessons from biological and biochemical effects in different cells. Adv Cyclic Nucleotide Protein Phoshorylation Res 1984; 17:173–182.

    CAS  Google Scholar 

  28. Ui M. Islet-activating protein, pertussis toxin: a probe for functions of the inhibitory guanine nucleotide regulatory component of adenylate cyclase. Trends Pharmacol Sci 1984; 5:277–279.

    Article  CAS  Google Scholar 

  29. Katada T, and Ui M. ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J Biol Chem 1982; 257:7210–7216.

    PubMed  CAS  Google Scholar 

  30. Hazeki O, Ui M. Modification by islet-activating protein of receptor-mediated regulation of cyclic AMP accumulation in isolated heart cells. J Biol Chem 1981; 256:2856–2862.

    PubMed  CAS  Google Scholar 

  31. Hsu WH, Rudolph U, Sanford J, Bertrand P, Olate J, Nelson C, Moss LG, Boyd AE, Codina J, Birnbaumer L. Molecular cloning of a novel splice variant of the alpha subunits of the mammalian Go protein. J Biol Chem 1990; 265:11220–11226.

    PubMed  CAS  Google Scholar 

  32. Strathmann M, Wilkie TM, Simon MI. Alternative splicing produces transcripts encoding two forms of the alpha subunit of GTP-binding protein Go. Proc Natl Acad Sci USA 1990; 87:6477–6481.

    Article  PubMed  CAS  Google Scholar 

  33. Moriarty TM, Padrell E, Casty DJ, Mri G, Landau EM, Iyengar R. Go protein as signal transducter in the pertussis toxin-sensitive phosphatidyl inositol pathway. Nature 1990; 343:79–82.

    Article  PubMed  CAS  Google Scholar 

  34. Ewald DA, Sternweis PC, Miller RJ. Guanine nucleotidebinding protein Go-induced coupling of neuropeptide Y receptors to Ca21 channels in sensory neurons. Proc Natl Acad Sci USA 1988; 85:3633–3637.

    Article  PubMed  CAS  Google Scholar 

  35. Kleuss C, Scherub H, Hescheler J, Schultz G, Wittig B. Different beta-subunits determine G-protein interaction with transmembrane receptors. Nature 1992; 358:372.

    Article  Google Scholar 

  36. Strittmatter SM, Valenzuela D, Kennedy TE, Neer EJ, Fishman MC. Go is a major growth cone protein subject to regulation by GAP-43. Nature 1990; 344:836–841.

    Article  PubMed  CAS  Google Scholar 

  37. Katada T, Oinuma M, Ui M. Two guanine nucleotide-binding proteins in rat brain serving as the specific substrate of islet-activating protein, pertussis toxin. Interaction of the alpha-subunits with beta gamma-subunits in development of their biological activities. J Biol Chem 1986; 261:8182–8191.

    PubMed  CAS  Google Scholar 

  38. Pang IH, Sternweis OC. Purification of unique alpha subunits of GTP-binding regulatory proteins (G proteins) by affnity chromatography with immobilized beta gamma subunits. J Biol Chem 1990; 265:18707–18712.

    PubMed  CAS  Google Scholar 

  39. Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science 1991; 252:802–808.

    PubMed  CAS  Google Scholar 

  40. Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE. G-protein beta gamma-subunits activate the cardiac muscarinic K1-channel via phospholipase A2. Nature 1989; 337:557–560.

    Article  PubMed  CAS  Google Scholar 

  41. Park D, John DY, Kriz R, Knopf J, Rhee SG. Cloning, sequencing, expression, and Gq-independent activation of phospholipase C-beta 2. J Biol Chem 1992; 267:16048–16055.

    PubMed  CAS  Google Scholar 

  42. Spiegel AM, Shenker A, Weinstein LS. Receptor-effector coupling by G-proteins: implications for normal and abnormal signal transduction. Endocrinol Rev 1992; 13:536–565.

    Article  CAS  Google Scholar 

  43. Fleming JW, Wisler PL, Watanabe AM. Signal transduction by G proteins in cardiac tissues. Circulation 1992;85: 420–433.

    PubMed  CAS  Google Scholar 

  44. Eschenhagen T. G proteins and the heart. Cell Biol Int 1993; 17:723–749.

    Article  PubMed  CAS  Google Scholar 

  45. Hammond HK, Ransnas LA, White FC, Bloor CM, Insel PA. Myocardial b-receptor number, pharmacological responsiveness and Gs in volume overload hypertrophy in PAGE (abstract). Circulation 1988; 78 (Suppl II): II–163.

    Google Scholar 

  46. Hammond HK, Roth DA, Torsel PA, Ford CE, White FC, Maisel AS, Ziegler MG, Bloor CM, Insel PA. Myocardial beta-adrenergic receptor expression and signal transduction after chronic volume-overload hypertrophy and circulatory congestion. Circulation 1992; 85:269–280.

    PubMed  CAS  Google Scholar 

  47. Longabaugh JP, Vatner DE, Vatner SF, Homcy CJ. Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overload left ventricular failure.J Clin Invest 1988; 81:420–424.

    PubMed  CAS  Google Scholar 

  48. Holmer SR, Bruckschlegl G, Schunkert H, Rataj DB, Krower EP, Riegger GA. Functional activity and expression of the myocardial post-receptor adenylyl cyclase system in pressure-overload hypertrophy in rat. Cardiovasc Res 1996; 31:719–728.

    Article  PubMed  CAS  Google Scholar 

  49. Mondry A, Bourgeois F, Carre F, Swynghedauw B, Moalic JM. Decrease in beta-1-adrenergic and M2 muscarinic receptor mRNA levels and unchanged accumulation of mRNAs coding for G-alpha i-2 and G alpha s proteins in rat cardiac hypertrophy. J Mol Cell Cardiol 1995; 27:2287–2294.

    Article  PubMed  CAS  Google Scholar 

  50. Moalic JM, Bourgeois F, Mansier P, Machida CA, Carre F, Chevalier B, Pilarque P, Swynghedauw B. Beta-1 adrenergic receptor and G alpha s mRNA in rat heart as a function of mechanical load and thyrosine intoxication. Cardiovasc Res 1993; 27:231–237.

    PubMed  CAS  Google Scholar 

  51. Bohm M, Kirchmayer R, Erdmann E. Myocardial Gia alphaprotein levels in patients with hypertensive cardiac hypertrophy,bischemic heart disease and cardiogenic shock. Cardiovasc Res 1995; 30:611–618.

    Article  PubMed  CAS  Google Scholar 

  52. Nieto JL, Diaz-Laviade I, Gnillen A, Garcia-Barreno P, Haro A. Cardiac beta-adrenoceptors, G-proteins and adenylate cyclase regulation during myocardial hypertrophy. Cell Signalling 1993; 5:169–179.

    Article  PubMed  CAS  Google Scholar 

  53. Asano M, Masuzawa K, Matsuda T, Asano T. Reduced function of the stimulatory GTP-binding protein in beta adrenoceptor-adenylate cyclase system of femoral arteries isolated from spontaneously hypertensive rats. J Pharmacol Exp Ther 1988; 246:709–718.

    PubMed  CAS  Google Scholar 

  54. Chen LA, Vatner DE, Vatner SF, Hiffinger L, Homcy CJ. Decreased Gs alpha mRNA levels accompany the fall in Gs and adenylyl cyclase activities in compensated left ventricular hypertrophy. In heart failure, only the impairment in adenylyl cyclase activation progresses. J Clin Invest 1991; 87:293–298.

    PubMed  CAS  Google Scholar 

  55. Feldman AM, Cates AE, Beazey WB, Hershberger RE, Bristow MR, Baughman KL, Baumgartner WA, Dop CV. Increase of the 40,000 mol wet pertussis toxin substrate (G-protein) in the failing human heart.J Clin Invest 1988; 82:189–197.

    PubMed  CAS  Google Scholar 

  56. Böhm M, Gierschik P, Jakobs KH, Schnabel P, Ungerer M, Erdmann E. Increase of Gi alpha in human hearts with dilated but not ischemic cardiomyopathy. Circulation 1990; 82: 1249–1265.

    PubMed  Google Scholar 

  57. Katoh Y, Komuro I, Yamaguchi H, Yazaki Y. Molecular mechanism of hypertrophied failing heart abnormalities of the diastolic properties and contractility. Japanese Circ J 1992; 56:694–700.

    CAS  Google Scholar 

  58. Cail JJ, Yu H, Lee HC. Developmental changes of protein kinase C and Gs alpha in hypertrophic cardiomyopathic hamster hearts. J Lab Clin Med 1993; 122:533–541.

    Google Scholar 

  59. Tobise K, Abe M, Onodera S. Prolonged period of global ischemia causes no change in the GTP-binding proteins in the isolated perfused heart. Eur J Pharmacol 1991; 208: 183–187.

    Article  PubMed  CAS  Google Scholar 

  60. Van den Ende R, Balink HD, Michel MC, Van Zwieten PA. In_uence of ischemia and reperfusion on cardiac signal transduction. G protein content, adenylyl cyclase activity, cyclic AMP content and forskolin and dibutyryl cyclic AMPinduced inotropy in the rat Langendorff heart. Fundam Clin Pharmacol 1994; 8:408–416.

    Article  PubMed  CAS  Google Scholar 

  61. Strasser RH, Krimmer J, Braun-Dullaeus R, Marguentant R, Kubler W. Dual sensitization of the adrenergic system in early myocardial ischemia: independent regulation of the beta-adrenergic receptors and the adenylyl cyclase. J Mol Cell Cardiol 1990; 22: 1405–1423.

    Article  PubMed  CAS  Google Scholar 

  62. Susanni EE, Manders WT, Knight DR, Vatner DE, Vatner SF, Homcy CJ. One hour of myocardial ischemia decreases the activity of the stimulatory guanine-nucleotide regulatory protein Gs. Circ Res 1989; 65:1145–1150.

    CAS  Google Scholar 

  63. Ohyanagi M, Yamamoto J, Nakamura K, Shibuyen J, Morita M, Masutani M, Arii T, Iwasaki T. Messenger RNA for the guanine nucleotide-binding regulatory protein (G-protein) is reduced in the acute ischemic myocardium. J Mol Cell Cardiol 1995; 27:1131–1139.

    Article  PubMed  CAS  Google Scholar 

  64. Maisel AS, Ransnas LA, Insel PA. Beta-adrenergic receptors and the Gs protein in myocardial ischemia and injury. Basic Res Cardiol 1990; 85 (Suppl 1): 47–56.

    PubMed  Google Scholar 

  65. Hammond HR, Roth DA, McKirnan MD, Ping P. Regional myocardial down regulation of the inhibitory guanosine triphosphate binding protein (Gi alpha 2) and beta-adrenergic receptors in a porcine model of chronic myocardial ischemia. J Clin Invest 1993; 92: 2644–2652.

    PubMed  CAS  Google Scholar 

  66. Wolf AA, Hines DK, Karliner JS. Preserved beta-adrenoceptor-mediated adenylyl cyclase activity despite receptor and post-receptor dysfunction in acute myocardial ischemia. Am Heart J 1994; 128(3):542–550.

    Article  Google Scholar 

  67. Takenaka K, Kanaho Y, Nagata K, Sakai N, Yamada H, Nozawa Y. Ischemia of rat brain decreases pertussis toxincatalyzed[32P]ADP-ribosylation of GTP-binding proteins (Gil and Go) in membranes. J Cerebral Blood Flow and Metabolism 1991; 11(1): 155–160.

    CAS  Google Scholar 

  68. Suyama K, Saito K, Chen G, Pan PS, Manji HK, Potter WZ. Alterations in cyclic AMP generation and G-protein subunits following transient ischemia in gerbil hippocampus. J Cerebral Blood Flow and Metabolism 1995; 15(5): 877–885.

    CAS  Google Scholar 

  69. Jaw SP, Su DD, Matsumoto RR, Truong DD. Alteration of brain levels of phosphoinositidase C-linked Gq alpha/G11 alpha proteins and motor function in rats after cardiac arrest. Stroke 1995; 26(6): 1067–1070.

    PubMed  CAS  Google Scholar 

  70. Anand-Srivastava MB. Enhanced expression of inhibitory guanine nucleotide regulatory proteins (Gia) in spontaneously hypertensive rats: relationship to adenylate cyclase inhibition. Biochem J 1992; 288: 79–85.

    PubMed  CAS  Google Scholar 

  71. Thibault C, Anand-Srivastava MB. Altered expression of G-protein mRNA in spontaneously hypertensive rat hearts exhibit altered expression of G-proteins. FEBS Letter 1992; 313: 160–164.

    Article  CAS  Google Scholar 

  72. Anand-Srivastava MB, Picard S, Thibault C. Altered expression of inhibitory guanine nucleotide regulatory proteins (Gia) in spontaneously hypertensive rats.AmJ Hypertens 1991; 4: 840–843.

    CAS  Google Scholar 

  73. Anand-Srivastava MB. Rat platelets from spontaneously hypertensive rats exhibit decreased expression of inhibitory guanine nucleotide regulatory protein: relationship with adenylate cyclase activity. Circ Res 1993; 73: 1032–1039.

    PubMed  CAS  Google Scholar 

  74. Anand-Srivastava MB, de Champlain J, Thibault C. DOCAsalt hypertensive rat hearts exhibit altered expression of G-proteins. Am J Hypertens 1993; 6: 72–75.

    PubMed  CAS  Google Scholar 

  75. Böhm M, Gierschik P, Knorr A, Larisch K, Weismann K, Erdmann E. Desensitization of adenylate cyclase and increase of G alpha in cardiac hypertrophy due to acquired hypertension. Hypertension 1992; 20: 103–112.

    PubMed  Google Scholar 

  76. Böhm M, Gierschik P, Knorr A, Schmidt U, Weismann K, Erdmann E. Cardiac adenylyl cyclase, beta-adrenergic re-ceptors, and G proteins in salt-sensitive hypertension. Hypertension 1993; 22: 715–727.

    Google Scholar 

  77. Li P, Zou AP, Al-kayed NJ, Rusch NJ, Harder DR. Guanine nucleotide-binding proteins in aortic smooth muscle from hypertensive rats. Hypertension 1994; 23: 914–918.

    PubMed  CAS  Google Scholar 

  78. Michel MC, Farke W, Erdbrugger W, Philipps T, Brodde OE. Ontogenesis of sympathetic responsiveness in spontaneously hypertensive rats. II. Renal G proteins in male and female rats. Hypertension 1994; 23: 653–658.

    PubMed  CAS  Google Scholar 

  79. Clark CJ, Milligan G, Connell JM. Guanine nucleotide regulatory protein alterations in the Milan hypertensive rat strain. 1993; 11: 1161–1169.

    CAS  Google Scholar 

  80. McLellan AR, Milligan G, Houslay MD, Connell JM. G-proteins in experimental hypertension: a study of spontaneously hypertensive rat myocardial and renal cortical plasma membranes. J Hypertens 1993; 11: 365–372.

    PubMed  CAS  Google Scholar 

  81. Anand-Srivastava MB. Altered responsiveness of adenylate cyclase to adenosine and other agents in the myocardial sarcolemma and aorta of spontaneously hypertensive rats. Biochem Pharmacol 1988; 37: 3017–3022.

    Article  PubMed  CAS  Google Scholar 

  82. Chang GE, Anand-Srivastava MB. Altération des proteins G et de l'activité adénylyl cyclase dans le coeur du rat hypertendu par clampage d'une artére rénale. Médecine-Sciences 1997; 13: 18.

    Google Scholar 

  83. Limas CJ, Limas C. Reduced number of b-adrenergic receptors in the myocardium of spontaneously hypertensive rats. Biochem Biophys Res Commun 1978; 83:710–714.

    Article  PubMed  CAS  Google Scholar 

  84. Woodcock EA, Farder JW, Johnston CI. Decreased cardiac beta-adrenergic receptors in deoxycorticosterone-salt and renal hypertensive rats. Circ Res 1979; 45: 560–565.

    PubMed  CAS  Google Scholar 

  85. Bhalla RC, Sharma RV, Ramanathan S. Ontogenetic development of isoproterenol subsensitivity of myocardial adenylate cyclase and beta-adrenergic receptors in spontaneously hypertensive rats. Biochim Biophys Acta 1980; 632: 497–506.

    PubMed  CAS  Google Scholar 

  86. Kinoshita S, Gidhu A, Felder RA. Defective dopamine-1 receptor adenylate cyclase coupling in the proximal convoluted tubule from the spontaneously hypertensive rat. J Clin Invest 1989; 84: 1849–1856.

    Article  PubMed  CAS  Google Scholar 

  87. Kanagy NL, Webb RC. Increased responsiveness and decreased expression of G-proteins in deoxycorticosteronesalt hypertension. Hypertension 1996; 27: 740–745.

    PubMed  CAS  Google Scholar 

  88. DiFusco F, Anand-Srivastava MB. Nitric oxide synthase inhibition by Nx-nitro-L-arginine methyl ester modulates G-protein expression and adenylyl cyclase activity in rat heart. Am J Hypertens, 1997, 10:471–475.

    Article  CAS  Google Scholar 

  89. Triggle R, Tabrizchi R. Changes in vascular smooth muscle function in hypertension. Chin Med J 1993; 106: 250–257.

    PubMed  CAS  Google Scholar 

  90. Pandey S, Anand-Srivastava MB. Modulation of G-protein expression by the angiotensin converting enzyme inhibitor captopril in hearts from spontaneously hypertensive rats: relationship with adenylyl cyclase. Am J Hypertens 1996; 9: 833–837.

    Article  PubMed  CAS  Google Scholar 

  91. Böhm M, Grabel C, Fesch M, Knorr A, Erdmann E. Treatment in hypertensive cardiac hypertrophy, II. Postreceptor events. Hypertension 1995; 25: 962–970.

    PubMed  Google Scholar 

  92. Marcil J, Thibault C, Anand-Srivastava MB. Enhanced expression of Gi-protein precedes the development of blood pressure in spontaneously hypertensive rats. J Mol Cell Cardiol 1997; 29:1009–1022.

    Article  PubMed  CAS  Google Scholar 

  93. Marcil J, de Champlain J, Anand-Srivastava MB. Overexpression precedes the development of DOCA-salt-induced hypertension: relationship with adenylyl cyclase. Under review.

  94. Marcil J, Schffrin EL, Anand-Srivastava MB. Aberrant adenylyl cyclase/cAMP signal transduction and G protein levels in platelet from hypertensive patients improve with antihypertensive drug therapy. Hypertension 1996; 28: 83–90.

    PubMed  CAS  Google Scholar 

  95. McLellan AR, Milligan G, Houslay MD, Connell JM. G-proteins in essential hypertension: a study of human platelets plasma membranes. J Hypertens 1993; 11(5): 543–549.

    PubMed  CAS  Google Scholar 

  96. Marcil J, Anand-Srivastava MB. G protein alterations in lymphocytes from spontaneously hypertensive rats: correlation with adenylyl cyclase. Under review.

  97. Feldman RD, Jan CM, Chorazyczewski J. G protein alterations in hypertension and aging. Hypertension 1995; 26: 725–732.

    PubMed  CAS  Google Scholar 

  98. Hamet P, Franks DJ, Adnot S, Coquil JF. Cyclic nucleotides in hypertension. Adv Cyclic Nucleotide Res 1980; 12: 11–23.

    PubMed  CAS  Google Scholar 

  99. Zeng YY, Benishin CG, Pang PKT. Increased responsiveness of the adenylate cyclase (AC) signalling system in splenocyte membranes from spontaneously hypertensive rats (SHR) (abstract). FASEB J 1991; 5: A1597.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anand-Srivastava, M.B. G-protein and Membrane Signaling in Cardiovascular Disease. Heart Fail Rev 2, 85–94 (1997). https://doi.org/10.1023/A:1009767810044

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009767810044

Navigation