Skip to main content
Log in

Markov- and Bernstein-Type Inequalities for Polynomials with Restricted Coefficients

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The Markov-type inequality\(||p\prime ||_{[0,1]} \leqslant cn\log (n + 1)||p||_{[0,1]} \) is proved for all polynomials of degree at most n with coefficients from {-1,0,1} with an absolute constant c. Here ‖·‖[0,1] denotes the supremum norm on [0,1]. The Bernstein-type inequality\(|p\prime (y)| \leqslant \frac{c} {{(1 - y)^2 }}||p||_{[0,1]} ,y \in [0,1) \) is shown for every polynomial p of the form \(p(x) = \sum\limits_{j = m}^n {a_j x^j } ,|a_m | = 1,|a_j | \leqslant 1,a_{j \in } \mathbb{C} \) The inequality \(|p\prime (y)| \leqslant \frac{c} {{(1 - y)}}\log \left( {\frac{2} {{1 - y}}} \right)||p||_{[0,1]} ,y \in [0,1) \) is also proved for every analytic function p on the open unit disk D that satisfies the growth condition \(|p(0)| = 1,|p(z) \leqslant \frac{1} {{1 - |z|}},z \in D \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Bernstein, Collected Works: Vol. I, Constructive Theory of Functions (1905-1930), English translation, Atomic Energy Commision, Springfield, VA, 1958.

    Google Scholar 

  2. J. Beck, “Flat polynomials on the unit circle-Note on a problem of Littlewood,” Bull. London Math. Soc. 23(1991), 269-277.

    Google Scholar 

  3. A. Bloch and G. Pólya, “On the roots of certain algebraic equations,” Proc. London Math. Soc. 33(1932), 102-114.

    Google Scholar 

  4. E. Bombieri and J. Vaaler, “Polynomials with low height and prescribed vanishing,” in Analytic Number Theory and Diophantine Problems, Birkhäuser (1987), 53-73.

  5. P.B. Borwein, “Markov's inequality for polynomials with real zeros,” Proc. Amer. Math. Soc. 93(1985), 43-48.

    Google Scholar 

  6. P.B. Borwein and T. Erdélyi, “Sharp Markov-Bernstein type inequalities for classes of polynomials with restricted zeros,” Constr. Approx. 10(1994), 411-425.

    Google Scholar 

  7. P.B. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag, Graduate Texts in Mathematics, 1995, p. 486.

  8. P.B. Borwein and T. Erdélyi, “Markov and Bernstein type inequalities in L p for classes of polynomials with constraints,” J. London Math. Soc. 51(1995), 573-588.

    Google Scholar 

  9. P.B. Borwein, T. Erdélyi, and G. Kós, “Littlewood-type problems on [0, 1],” manuscript.

  10. P. Borwein and C. Ingalls, “The Prouhet, Tarry, Escott problem,” Ens. Math. 40(1994), 3-27.

    Google Scholar 

  11. J.S. Byrnes and D.J. Newman, “Null steering employing polynomials with restricted coefficients,” IEEE Trans. Antennas and Propagation 36(1988), 301-303.

    Google Scholar 

  12. E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, NY, 1966.

    Google Scholar 

  13. P.J. Cohen, “On a conjecture of Littlewood and idempotent measures,” Amer. J. Math. 82(1960), 191-212.

    Google Scholar 

  14. R.A. DeVore and G.G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.

    Google Scholar 

  15. R.J. Duffin, and A.C. Scheaffer, “A refinement of an inequality of the brothers Markoff,” Trans. Amer. Math. Soc. 50(1941), 517-528.

    Google Scholar 

  16. T. Erdélyi, “Pointwise estimates for derivatives of polynomials with restricted zeros,” in Haar Memorial Conference (J. Szabados and K. Tandori, eds.), North-Holland, Amsterdam, 1987, pp. 329-343.

  17. P. Erdös, “Some old and new problems in approximation theory: Research problems 95-1,” Constr. Approx. 11(1995), 419-421.

    Google Scholar 

  18. P. Erdös and P. Turán, “On the distribution of roots of polynomials,” Annals of Math. 57(1950), 105-119.

    Google Scholar 

  19. Le Baron O. Ferguson, Approximation by polynomials with integral coefficients, Amer. Math. Soc., Providence, R.I., 1980.

    Google Scholar 

  20. L.K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, Heidelberg, New York, 1982.

    Google Scholar 

  21. J.-P. Kahane, Some Random Series of Functions, Cambridge Studies in Advanced Mathematics, Cambridge, 1985, vol. 5, second edition.

    Google Scholar 

  22. J.-P. Kahane, “Sur les polynômes á coefficients unimodulaires,” Bull. London Math. Soc. 12(1980), 321-342.

    Google Scholar 

  23. S. Konjagin, “On a problem of Littlewood,” Izv. Acad. Nauk SSSR, Ser. Mat. 45(2) (1981), 243-265.

    Google Scholar 

  24. T.W. Körner, “On a polynomial of J.S. Byrnes,” Bull. London Math. Soc. 12(1980), 219-224.

    Google Scholar 

  25. J.E. Littlewood, “On the mean value of certain trigonometric polynomials,” J. London Math. Soc. 36(1961), 307-334.

    Google Scholar 

  26. J.E. Littlewood, “Some problems in real and complex analysis,” Heath Mathematical Monographs, Lexington, Massachusetts, 1968.

  27. J.E. Littlewood and A.C. Offord, “On the number of real roots of a random algebraic equation, II,” Proc. Cam. Phil. Soc. 35(1939), 133-148.

    Google Scholar 

  28. G.G. Lorentz, “The degree of approximation by polynomials with positive coefficients,” Math. Ann. 151(1963), 239-251.

    Google Scholar 

  29. G.G. Lorentz, Approximation of Functions, Chelsea, New York, NY, 1986, 2nd edition.

  30. G.G. Lorentz, M. von Golitschek, and Y. Makovoz, Constructive Approximation, Advanced Problems, Springer, Berlin, 1996.

    Google Scholar 

  31. A. Máté and P. Nevai, “Bernstein inequality in L p for 0 < p< 1, and C, 1) bounds of orthogonal polynomials,” Ann. of Math. 111(1980), 145-154.

    Google Scholar 

  32. G.V. Milovanovic, D.S. Mitrinovic, and Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.

    Google Scholar 

  33. P. Nevai, “Bernstein's inequality in L p, 0 < p< 1,” J. Approx. Theory 27(1979), 239-243.

    Google Scholar 

  34. D.J. Newman, “Derivative bounds for Müntz polynomials,” J. Approx. Theory 18(1976), 360-362.

    Google Scholar 

  35. D.J. Newman and J.S. Byrnes, “The L 4 norm of a polynomial with coefficients ±1 ”, Amer. Math. Monthly 97(1990), 42-45.

    Google Scholar 

  36. D.J. Newman and A. Giroux, “Properties on the unit circle of polynomials with unimodular coefficients,” in Recent Advances in Fourier Analysis and its Applications (J.S. Byrnes and J.F. Byrnes, eds.), Kluwer, 1990, pp. 79-81.

  37. A. Odlyzko and B. Poonen, “Zeros of polynomials with 0,1 coefficients,” Ens. Math. 39(1993), 317-348.

    Google Scholar 

  38. Q.I. Rahman, and G. Schmeisser, Les Inégalités de Markoff et de Bernstein, Les Presses de L'Université de Montreal, 1983.

  39. R. Salem and A. Zygmund, “Some properties of trigonometric series whose terms have random signs,” Acta Math. 91(1954), 254-301.

    Google Scholar 

  40. I. Schur, “Untersuchungen über algebraische Gleichungen,” Sitz. Preuss. Akad.Wiss., Phys.-Math. Kl. (1933), 403-428.

  41. G. Szegő, “Bemerkungen zu einem Satz von E. Schmidt uber algebraische Gleichungen,” Sitz. Preuss. Akad. Wiss., Phys.-Math. Kl. (1934), 86-98.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borwein, P., Erdélyi, T. Markov- and Bernstein-Type Inequalities for Polynomials with Restricted Coefficients. The Ramanujan Journal 1, 309–322 (1997). https://doi.org/10.1023/A:1009761214134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009761214134

Navigation