Skip to main content

Advertisement

Log in

Changes in Surface Morphology of Calcite Exposed to the Oceanic Water Column

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Reactions occurring on the surfaces of biogenic carbonate minerals can have important consequences for the biogeochemical cycle of carbon. In this study, carbonate mineral surface reactions with ambient seawater were investigated by atomic force microscopy (AFM). A sampling method was developed in which calcite surfaces were hung at discrete depths on a sediment trap array line for a three-day deployment period in subtropical North Pacific waters. Changes in surface morphologies were examined at nanometer resolution and evaluated using as a constraint the depth profile of calcite saturation in these waters. Evidence suggests that: (1) organic films which develop on carbonate surfaces exposed to shallow seawater may be responsible for the oversaturated state of the upper oceanic water column, (2) dissolution of carbonate minerals within the shallow warm layer of the ocean could be responsible for part of the alkalinity anomaly observed in the North Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arakawa H., Umemura K. and Ikai A. (1992) Protein images obtained by STM, AFM and TEM. Nature 358, 171–173.

    Google Scholar 

  • Berger W. H. (1967) Foraminifera ooze: Solution at depth. Science 156, 83–385.

    Google Scholar 

  • Berner R. A. (1975) The role of magnesium in the crystal growth of calcite and aragonite from seawater, Geochim. Cosmochim Acta 39, 489–504.

    Google Scholar 

  • Berner R. A., Westrich J. T., Graber R., Smith J. and Martens C. S. (1978) Inhibition of aragonite precipitation from super saturated seawater: A laboratory and field study. Amer. J. Sci. 73, 3315–3321.

    Google Scholar 

  • Betzer P. R. (1984) The oceanic carbonate system: A reassessment of biogenic control. Science 226, 1074–1077

    Google Scholar 

  • Broecker W. S. (1974) Chemical Oceanography, Harcourt Brace Jovanovich, NY, 214 pp.

    Google Scholar 

  • Broecker W. S. and Peng T. H. (1972) In: Tracer in the Sea, Columbia University, New York, 690 pp.

    Google Scholar 

  • Bingham F. and Lukas R. (1994) The southward intrusion of North Pacific Intermediate water along the Mindanao Coast. submitted to J. Phys. Oceanogr.

  • Binning G. Quate C., and Gerber C. (1986) Atomic force microscope. Phys. Rev. Lett. 56, 930–933.

    Google Scholar 

  • Broecker W. S. and Takahashi T. (1978) The relationship between lysocline and in situ carbonate ion concentration. Deep-Sea Res. 25, 65–95.

    Google Scholar 

  • Chave K. E. and Suess E. (1967) Suspended minerals in seawater. N. Y. Acad. Sci. Trans. 29, 991–1000.

    Google Scholar 

  • Chen C. T. A. and Pytkowicz R. M., 1979, On the total CO2-titration alkalinity-oxygen system in the Pacific Ocean. Nature 281, 362–356.

    Google Scholar 

  • Dickson A. (1984) pH scales and proton-transfer reactions in saline media such as seawater. Geochim. Cosmochim. Acta 48, 2299–2308.

    Google Scholar 

  • Dove P. M. and Hochella, M. F. (1993) Calcite precipitation mechanisms and inhibition by orthophosphate: In situ observations by Scanning Force Microscopy. Geochim. Cosmochim. Acta 57, 705–714.

    Google Scholar 

  • Edmond J. M. and Gieskes J. M. (1970) On the calculation of the degree of saturation of seawater with respect to calcium carbonate under in situ conditions. Geochim. Cosmochim. Acta 34,12, 1261–1291.

    Google Scholar 

  • Hansma P. K., Elings V. B., Marti O. and Bracker C. E. (1988) Scanning tunneling microscopy and atomic force microscopy: Applications to biology and technology. Science 242, 209–216.

    Google Scholar 

  • Hansson I. (1973) A new set of pH scales and standard buffers for seawater. Deep-Sea Res. 20, 479–491.

    Google Scholar 

  • Harbison G. W. and Gilmer R. W. (1986) Effects of animal behavior on sediment trap collections: implications for the calculation of aragonite fluxes. Deep-Sea Res. 33, 1017–1024.

    Google Scholar 

  • Hillner P. E., Gratz A. J., Manne S. and Hansma P.K. (1992) Atomic-scale imaging of calcite growth and dissolution in real time. Geology 20, 359–362.

    Google Scholar 

  • Karl D. M., Winn C. D., Hebel D. V. and Letelier R. (1990) Hawai'i Ocean Time-series program field and laboratory protocols. SOEST, UHM, Honolulu, HI, 72 pp.

    Google Scholar 

  • Keir R. S. (1980) The dissolution kinetics of biogenic calcium carbonates in seawater. Geochim. Cosmochim. Acta 44, 241–252.

    Google Scholar 

  • Kitano Y. and Hood, D. W. (1965) The influence of organic material on the polymorphic crystallization of calcium carbonate. Geochim. Cosomochim. Acta 29, 29–41.

    Google Scholar 

  • Li, Y. H., Takahasi T. and Broecker W. S. (1969) Degree of saturation of CaCO3 in the oceans. J. Geophys. Res. 74, 5507–5525.

    Google Scholar 

  • Lin, J. N., Drake, B., Lea, A. S., Hansma, P.K. and Andrade, J. D. (1990) Direct observation of immuloglobin adsorption dynamics using the atomic force microscope. Langmuir 6, 509–511.

    Google Scholar 

  • Millero F. J. (1979) The thermodynamics of the carbonate system in seawater. Geochim. Cosmochim. Acta 43, 1651–1661.

    Google Scholar 

  • Milliman J., D. (1977) Dissolution of calcium carbonate in the Sargasso Sea. The Fate of Fossil Fuel CO 2 in the Oceans (eds N. R. Andersen and A. Malahoff). Plenum Press, NY, London

    Google Scholar 

  • Milliman J. D. (1993) Production and accumulation of calcium carbonate in the oceans: Budget of a nonsteady state, Global Biogeochem. Cycles 7(4), 927–957.

    Google Scholar 

  • Milliman J. D. and Droxler A. W. (1995) Calcium carbonate sedimentation in the global ocean: Linkages between the neritic and pelagic environments. Oceanogr. 8,3, 92–94.

    Google Scholar 

  • Milliman J. D. (1993) personal correspondence Morse J. W. and Berner R. A. (1972) Dissolution kinetics of calcium carbonate in seawater: II. Kinetic origin for the lysocline. Amer. J. Sci. 272, 840–851.

    Google Scholar 

  • Morse J. W. (1974) Dissolution kinetics of calcium carbonate in solution: V: Effects of natural inhibitors and the position of the chemical lysocline. Amer. J. Sci. 274, 638–647.

    Google Scholar 

  • Morse J. W. and Mackenzie F. T. (1990) Geochemistry of Sedimentary Carbonates. Elsevier, New York, 707 pp.

    Google Scholar 

  • Peterson M. N. A. (1966) Calcite: Rate of dissolution in a vertical profile in the central Pacific. Science 154, 1542–1543.

    Google Scholar 

  • Pytkowicz R., M. (1965) Rates of inorganic calcium carbonate nucleation. J. Geol. 73, 196–199.

    Google Scholar 

  • Rugar D. and Hansma P. K. (1990) Atomic force microscope. Physics Today 43,10, 22–23

    Google Scholar 

  • Sabine C. L. and Mackenzie F. T. (1991) Oceanic sinks for anthropogenic CO2. Int. J. Energy, Environ. 1, 119–127

    Google Scholar 

  • Sabine C. L. (1992) Geochemistry of particulate and dissolved inorganic carbon in the Central North Pacific Gyre. Ph.D. Thesis, Univ. of Hawai'i, 249 pp.

  • Schoonmaker J. E. (1981) Magnesian calcite-seawater reactions; solubility and recrystallization behavior, Ph.D. Thesis, Northwestern University, Evanston, Ill.

    Google Scholar 

  • Smith S. V. and Mackenzie F. T. (1989) The ocean as a net hetrotrophic system: Implications from the carbon biogeochemical cycle. Global Biogeom. Cycles 1, 187–198.

    Google Scholar 

  • Suess E. (1970) Interaction of organic compounds with calcium carbonate: I. Association phenomena and geochemical implications. Geochim. Cosmochim. Acta 34, 157–168.

    Google Scholar 

  • Talley L. D. (1985) Ventilation of the Subtropical North Pacific: The shallow salinity minimum. J. Phys. Oceanog. 15, 633–649.

    Google Scholar 

  • Troy P. J. (1995) Surface chemistry of solids in the upper ocean. Ph.D. Thesis, University of Hawai'i at Manoa.

    Google Scholar 

  • Tsuchiya M. (1968) Upper waters of the intertropical Pacific Ocean. Johns Hopkins Oceanographic Studies, No. 4, 50 pp.

  • Tsuchiya M. (1991) Flow path of the Antarctic Intermediate Water in the western equatorial South Pacific Ocean. Deep-Sea Res. 38,Suppl. 1, S273–279.

    Google Scholar 

  • Wollast R., Garrels R. M. and Mackenzie F. T. (1980) Calcite-seawater reactions in ocean surface waters. Amer. J. Sci. 280, 831–848.

    Google Scholar 

  • Wollast R. and Mackenzie F. T. (1989) Global biogeochemical cycles and climate. In Climate and Geosciences (ed, A. Berger). pp. 453–473. D. Reidel, Dordrecht.

    Google Scholar 

  • Wollast R. (1994) The relative importance of biomineralization and the dissolution of CaCO3 in the global carbon cycle. in: Past and present biomineralization processes. IUCN-COE Workshop Manoco, Nov. 1993, MUSEE Oceanographique, Monaco.

    Google Scholar 

  • Wollast R. (1981) Interactions between major biogeochemical cycles in marine ecosystems. In Some Perspectives of the Major Biogeochemical Cycles (ed. G. E. Liken), Wyrtki K. (1962) The oxygen minima in relation to ocean circulation. Deep-Sea Res. 9, 11–23.

    Google Scholar 

  • Wyrtki K. (1974) The dynamic topography of the Pacific Ocean and its fluctuations. Hawai'i Institute of Geophysics Report HIG–67–15, 152 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Troy, P.J., Li, YH. & Mackenzie, F.T. Changes in Surface Morphology of Calcite Exposed to the Oceanic Water Column. Aquatic Geochemistry 3, 1–20 (1997). https://doi.org/10.1023/A:1009652821575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009652821575

Navigation