Skip to main content
Log in

A percutaneous device as model to study the in vivo performance of implantable amperometric glucose sensors

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Glucose kinetics were investigated in subcutaneous tissue of rabbits, in which a percutaneous device was implanted. The device was used for collection of tissue fluid and as carrier of an amperometric glucose sensor. Changes in glycaemia were reflected in subcutaneous tissue fluid. However, a limited number of responses of the implanted sensors were observed. Histologic evaluation showed thin fibrous capsules surrounding the implants. Accumulations of inflammatory cells were observed inside the subcutaneous chamber. The experiments again showed that changes in blood glucose concentration can be measured in subcutaneous tissue fluid collected with a percutaneous device. Nevertheless, implanted glucose sensors could not reliably monitor these changes. Supported by our histological observations and sufficient in vitro performance, we suppose that the cellular reaction to the sensor plays an important role in this poor in vivo performance. In combination with adsorption of tissue fluid proteins, this results in a reversible deactivation of implanted sensors. The exact mechanisms involved in this process are currently unknown and need further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. GOUGH and J. C. ARMOUR, Diabetes 44 (1995) 1005.

    Google Scholar 

  2. D. M. FRASER in ``Biosensors in the body'' (JohnWiley & Sons, Chichester, 1997) p. 1.

    Google Scholar 

  3. J. C. PICKUP and D. R. THEVENOT in ``Advances in biosensors'' (JAI Press, London, 1993) p. 201.

    Google Scholar 

  4. S. J. UPDIKE, M. SHULTS and B. EKMAN, Diabetes Care 5 (1982) 207.

    Google Scholar 

  5. U. FISCHER, Acta Anaesthesiol. Scand. 39 (1995) 21.

    Google Scholar 

  6. M. GERRITSEN, J. A. JANSEN, A. KROS, R. J. M. NOLTE and J. A. LUTTERMAN, J. Invest. Surg. 11 (1998) 163.

    Google Scholar 

  7. W. M. REICHERT and A. A. SHARKAWY in ``Handbook of biomaterials evaluation: scientific, technical, and clinical testing of implant materials'' edited by A. F. von Recum (Taylor & Francis, London, 1999) p. 439.

    Google Scholar 

  8. A. F. VON RECUM and J. B. PARK, CRC Crit. Rev. Bioeng. 5 (1981) 37.

    Google Scholar 

  9. J. A. JANSEN, Y. C. G. J. PAQUAY and J. P. C. M. VAN DER WAERDEN, J. Biomed. Mater. Res. 28 (1994) 1047.

    Google Scholar 

  10. Y. C. G. J. PAQUAY, J. E. DE RUIJTER, J. P. C. M. VAN DER WAERDEN and J. A. JANSEN, ibid. 28 (1994) 1321.

    Google Scholar 

  11. R. J. GEISE, J. M. ADAMS, N. J. BARONE and A. M. YACYNYCH, Biosensors & Bioelectronics 6 (1991) 151.

    Google Scholar 

  12. H. P. KIMMICH and F. KREUZER in ``Progress in respiration research, oxygen pressure recording in gases, fluids, and tissues'' (S. Karger, Basel, 1996) p. 101.

    Google Scholar 

  13. H. B. M. VAN DER LUBBE, C. P. A. T. KLEIN and K. DE GROOT, Stain Technology 63 (1988) 171.

    Google Scholar 

  14. C. P. A. T. KLEIN, Y. M. H. F. SAUREN, W. E. MODDERMAN and J. P. C. M. VAN DER WAERDEN, J. Applied Biomaterials 5 (1994) 369.

    Google Scholar 

  15. F. MOUSSY, D. J. HARRISON and R. V. RAJOTTE, Int. J. Artif. Organs 17 (1994) 88.

    Google Scholar 

  16. B. J. GILLIGAN, M. C. SHULTS, R. K. RHODES and S. J. UPDIKE, Diabetes Care 17 (1994) 882.

    Google Scholar 

  17. W. KERNER, M. KIWIT, B. LINKE, F. KECK, H. ZIER and E. F. PFEIFFER, Biosensors and Bioelectronics 8 (1993) 473.

    Google Scholar 

  18. D. MOATTI SIRAT, F. CAPRON, V. POITOUT, G. REACH, D. S. BINDRA, Y. ZHANG, G. S. WILSON and D. R. THEVENOT, Diabetologia 35 (1992) 224.

    Google Scholar 

  19. K. W. CHANG, S. AISENBERG, J. S. SOELDNER and J. M. HIEBERT, Trans. Am. Soc. Artif. Int. Organs 19 (1973) 352

    Google Scholar 

  20. S. ERTEFAI and D. A. GOUGH, J. Biomed. Eng. 11 (1989) 362.

    Google Scholar 

  21. S. J. UPDIKE, M. C. SHULTS, R. K. RHODES, B. J. GILLIGAN, J. O. LUEBOW and D. VON HEIMBURG, ASAIO J. 40 (1994) 157.

    Google Scholar 

  22. A. REMES and D. F. WILLIAMS, Biomaterials 13 (1992) 731.

    Google Scholar 

  23. B. RONNEBERGER, W. J. KAO, J. M. ANDERSON and T. KISSEL, J. Biomed. Mater. Res. 30 (1996) 31. 24. T. J. FAHEY, S. VAN DEVENTER, S. MORGELLO, B. SHERRY, W. G. JONES, G. T. SHIRES, K. J. TRACEY, J. P. MINEI and A. CERAMI, Cytokine 2 (1990) 92.

    Google Scholar 

  24. P. S. LEPPERT and J. A. FIX, Biomaterials 11 (1990) 46.

    Google Scholar 

  25. J. E. BERGSMA, F. R. ROZEMA, R. R. M. BOS, G. BOERING, W. C. DE BRUIJN and A. J. PENNINGS, J. Biomed. Mater. Res. 29 (1995) 173.

    Google Scholar 

  26. A. S. ERIKSSON and P. THOMSEN, ibid. 12 (1991) 827.

    Google Scholar 

  27. A. S. ERIKSSON, L. E. ERICSON and P. THOMSEN, J. Mater. Sci.: Mater. Med. 5 (1994) 269.

    Google Scholar 

  28. D. J. CLAREMONT, I. E. SAMBROOK, C. PENTON and J. C. PICKUP, Diabetologia 29 (1986) 817.

    Google Scholar 

  29. K. REBRIN, U. FISCHER, H. HAHN VON DORSCHE, T. VON WOETKE, P. ABEL and E. BRUNSTEIN, J. Biomed. Eng. 14 (1992) 33.

    Google Scholar 

  30. A. A. SHARKAWY, B. KLITZMAN, G. A. TRUSKEY and W. M. REICHERT, J. Biomed. Mater. Res. 37 (1997) 401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerritsen, M., Kros, A., Lutterman, J.A. et al. A percutaneous device as model to study the in vivo performance of implantable amperometric glucose sensors. Journal of Materials Science: Materials in Medicine 12, 129–134 (2001). https://doi.org/10.1023/A:1008965826397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008965826397

Keywords

Navigation