Skip to main content
Log in

Differential Isotope Labeling Strategy for Determining the Structure of Myristoylated Recoverin by NMR Spectroscopy

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The three-dimensional solution structure of recombinant bovine myristoylated recoverin in the Ca2+-free state has been refined using an array of isotope-assisted multidimensional heteronuclear NMR techniques. In some experiments, the myristoyl group covalently attached to the protein N-terminus was labeled with 13C and the protein was unlabeled or vice versa; in others, both were 13C-labeled. This differential labeling strategy was essential for structural refinement and can be applied to other acylated proteins. Stereospecific assignments of 41 pairs of β-methylene protons and 48 methyl groups of valine and leucine were included in the structure refinement. The refined structure was constructed using a total of 3679 experimental NMR restraints, comprising 3242 approximate interproton distance restraints (including 153 between the myristoyl group and the polypeptide), 140 distance restraints for 70 backbone hydrogen bonds, and 297 torsion angle restraints. The atomic rms deviations about the averaged minimized coordinate positions for the secondary structure region of the N-terminal and C-terminal domains are 0.44 ± 0.07 and 0.55 ± 0.18 Å for backbone atoms, and 1.09 ± 0.07 and 1.10 ± 0.15 Å for all heavy atoms, respectively. The refined structure allows for a detailed analysis of the myristoyl binding pocket. The myristoyl group is in a slightly bent conformation: the average distance between C1 and C14 atoms of the myristoyl group is 14.6 Å. Hydrophobic residues Leu28, Trp31, and Tyr32 form a cluster that interacts with the front end of the myristoyl group (C1-C8), whereas residues Phe49, Phe56, Tyr86, Val87, and Leu90 interact with the tail end (C9-C14). The relatively deep hydrophobic pocket that binds the myristoyl group (C14:0) could also accommodate other naturally occurring acyl groups such as C12:0, C14:1, and C14:2 chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, J. B., Tanaka, T., Stryer, L. and Ikura, M. (1994) Biochemistry, 33, 10743–10753.

    Google Scholar 

  • Ames, J. B., Porumb, T., Tanaka, T., Ikura, M. and Stryer, L. (1995a) J. Biol. Chem., 270, 4526–4533.

    Google Scholar 

  • Ames, J. B., Tanaka, T., Ikura, M. and Stryer, L. (1995b) J. Biol. Chem., 270, 30909–30913.

    Google Scholar 

  • Archer, S. J., Ikura, M., Torchia, D. A. and Bax, A. (1991) J. Magn. Reson., 95, 636–641.

    Google Scholar 

  • Babu, Y. S., Sack, J. S., Greenhough, T. J., Bugg, C. E., Means, A. R. and Cook, W. J. (1985) Nature, 315, 37–40.

    Google Scholar 

  • Babu, Y. S., Bugg, C. E. and Cook, W. J. (1988) J. Mol. Biol., 204, 191–204.

    Google Scholar 

  • Bagby, S., Harvey, T. S., Eagle, S. G., Inouye, S. and Ikura, M. (1994) Structure, 2, 107–122.

    Google Scholar 

  • Barbato, G., Ikura, M., Kay, L. E., Pastor, R. W. and Bax, A. (1992) Biochemistry, 31, 5269–5278.

    Google Scholar 

  • Bax, A., Clore, G. M. and Gronenborn, A. M. (1990) J. Magn. Reson., 88, 425–431.

    Google Scholar 

  • Bax, A. and Pochapsky, S. S. (1992) J. Magn. Reson., 99, 638–643.

    Google Scholar 

  • Bendall, M. R., Pegg, D. T. and Doddrell, D. M. (1983) J. Magn. Reson., 52, 81–117.

    Google Scholar 

  • Braunschweiler, L. and Ernst, R. R. (1983) J. Magn. Reson., 53, 521–528.

    Google Scholar 

  • Brünger, A. T. (1992) X-PLOR Version 3.1: A System for X-ray Crystallography and NMR, Yale University Press, New Haven, CT.

    Google Scholar 

  • Chen, C. K., Inglese, J., Lefkowitz, R. J. and Hurley, J. B. (1995) J. Biol. Chem., 270, 18060–18066.

    Google Scholar 

  • Clore, G. M., Gronenborn, A. M., Nilges, M. and Ryan, C. A. (1987) Biochemistry, 26, 8012–8023.

    Google Scholar 

  • Clore, G. M., Bax, A. and Gronenborn, A. M. (1991) J. Biomol. NMR, 1, 13–22.

    Google Scholar 

  • Delaglio, F. (1993) NMR Pipe system of software, National Institutes of Health, Bethesda, MD.

    Google Scholar 

  • Dizhoor, A. M., Ericsson, L. H., Johnson, R. S., Kumar, S., Olshevskaya, E., Zozulya, S., Neubert, T. A., Stryer, L., Hurley, J. B. and Walsh, K. A. (1992) J. Biol. Chem., 267, 16033–16036.

    Google Scholar 

  • Dizhoor, A. M., Chen, C.-K., Olshevskaya, E., Sinelnikova, V. V., Phillipov, P. and Hurley, J. B. (1993) Science, 259, 829–832.

    Google Scholar 

  • Driscoll, P. C., Gronenborn, A. M. and Clore, G. M. (1989) FEBS Lett., 243, 223–233.

    Google Scholar 

  • Ferrin, T. E., Huang, C. C., Jarvis, L. E. and Langridge, R. (1988) J. Mol. Graph., 6, 13–27.

    Google Scholar 

  • Flaherty, K. M., Zozulya, S., Stryer, L. and McKay, D. B. (1993) Cell, 75, 709–716.

    Google Scholar 

  • Franco, M., Chardin, P., Chabre, M. and Paris, S. (1996) J. Biol. Chem., 271, 1573–1578.

    Google Scholar 

  • Garrett, D. S., Powers, R., Gronenborn, A. M. and Clore, G. M. (1991) J. Magn. Reson., 95, 214–220.

    Google Scholar 

  • Gray-Keller, M. P., Polans, A. S., Palczewski, K. and Detwiler, P. B. (1993) Neuron, 10, 523–531.

    Google Scholar 

  • Herzberg, O. and James, M. N. G. (1988) J. Mol. Biol., 203, 761–779.

    Google Scholar 

  • Hughes, R. E., Brzovic, P. S., Klevit, R. E. and Hurley, J. B. (1995) Biochemistry, 34, 11410–11416.

    Google Scholar 

  • Ikura, M., Kay, L. E. and Bax, A. (1991) J. Biomol. NMR, 1, 299–304.

    Google Scholar 

  • Inglese, J., Koch, W. J., Caron, M. G. and Lefkowitz, R. J. (1992) Nature, 359, 147–150.

    Google Scholar 

  • Jeener, J., Meier, B. H., Bachmann, P. and Ernst, R. R. (1979) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • Johnson, R. S., Ohguro, H., Palczewski, K., Hurley, J. B., Walsh, K. A. and Neubert, T. A. (1994) J. Biol. Chem., 269, 21067–21071.

    Google Scholar 

  • Jones, T. L. Z., Simonds, W. F., Merendino Jr., J. J., Brann, M. R. and Spiegel, A. M. (1990) Proc. Natl. Acad. Sci. USA, 87, 568–572.

    Google Scholar 

  • Kawamura, S. (1993) Nature, 362, 855–857.

    Google Scholar 

  • Kawamura, S., Hisatomi, O., Kayada, S., Tokunaga, F. and Kuo, C.-H. (1993) J. Biol. Chem., 268, 14579–14582.

    Google Scholar 

  • Kay, L. E. and Bax, A. (1990) J. Magn. Reson., 86, 110–126.

    Google Scholar 

  • Kay, L. E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  • Kay, L. E., Xu, G. Y., Singer, A. U., Muhandiram, D. R. and Forman-Kay, J. D. (1993) J. Magn. Reson., B101, 333–337.

    Google Scholar 

  • Klenchin, V. A., Calvert, P. D. and Bownds, M. D. (1995) J. Biol. Chem., 270, 16147–16152.

    Google Scholar 

  • Kobayashi, M., Takamatsu, K., Saitoh, S., Miura, M. and Noguchi, T. (1992) Biochem. Biophys. Res. Commun., 189, 511–517.

    Google Scholar 

  • Kobayashi, M., Takamatsu, K., Saitoh, S. and Noguchi, T. (1993) J. Biol. Chem., 268, 18898–18904.

    Google Scholar 

  • Kraulis, P. J. (1991) J. Appl. Crystallogr., 24, 946–950.

    Google Scholar 

  • Kretsinger, R. H., Rudnick, S. E. and Weissman, L. J. (1986) J. Inorg. Biochem., 28, 289–302.

    Google Scholar 

  • Kuboniwa, H., Tjandra, N., Grzesiek, S., Ren, H., Klee, C. B. and Bax, A. (1995) Nat. Struct. Biol., 2, 768–776.

    Google Scholar 

  • Kuno, T., Kajimoto, Y., Hashimoto, T., Mukai, H., Shirai, Y., Saheki, S. and Tanaka, C. (1992) Biochem. Biophys. Res. Commun., 184, 1219–1225.

    Google Scholar 

  • Ladant, D. (1995) J. Biol. Chem., 270, 3179–3185.

    Google Scholar 

  • Lee, W., Revington, M. J., Arrowsmith, C. and Kay, L. E. (1994) FEBS Lett., 350, 87–90.

    Google Scholar 

  • McLaughlin, S. and Aderem, A. (1995) Trends Biochem. Sci., 20, 272–276.

    Google Scholar 

  • Michel, T., Li, G. K. and Busconi, L. (1993) Proc. Natl. Acad. Sci. USA, 90, 6252–6256.

    Google Scholar 

  • Milligan, G., Parenti, M. and Magee, A. I. (1995) Trends Biochem. Sci., 20, 181–186.

    Google Scholar 

  • Muhandiram, D. R., Farrow, N. A., Xu, G.-Y., Smallcombe, S. H. and Kay, L. E. (1993) J. Magn. Reson., B102, 317–321.

    Google Scholar 

  • Nilges, M., Gronenborn, A. M., Brünger, A. T. and Clore, G. M. (1988) Protein Eng., 2, 27–38.

    Google Scholar 

  • Pascal, S. M., Muhandiram, D. R., Yamazaki, T., Forman-Kay, J. D. and Kay, L. E. (1994) J. Magn. Reson., B103, 197–201.

    Google Scholar 

  • Pongs, O., Lindemeier, J., Zhu, X. R., Theil, T., Engelkamp, D., Krah-Jentgens, I., Lambrecht, H.-G., Koch, K. W., Schwemer, J., Rivosecchi, R., Mallart, A., Galceran, J., Canal, I., Barbas, J. A. and Ferrus, A. (1993) Neuron, 11, 15–28.

    Google Scholar 

  • Resh, M. D. (1994) Cell, 76, 411–413.

    Google Scholar 

  • Shaka, A. J., Keeler, J., Frenkiel, T. A. and Freeman, R. (1983) J. Magn. Reson., 52, 335–338.

    Google Scholar 

  • Slupsky, C. M. and Sykes, B. D. (1995) Biochemistry, 34, 15953–15964.

    Google Scholar 

  • Tanaka, T., Ames, J. B., Harvey, T. S., Stryer, L. and Ikura, M. (1995) Nature, 376, 444–447.

    Google Scholar 

  • Tate, S., Ushioda, T., Utsunomiya-Tate, N., Shibuya, K., Ohyama, Y., Nakano, Y., Kaji, H., Inagaki, F., Samejima, T. and Kainosho, M. (1995) Biochemistry, 34, 14637–14648.

    Google Scholar 

  • Terasawa, M., Nakano, A., Kobayashi, R. and Hidaka, H. (1992) J. Biol. Chem., 267, 19596–19599.

    Google Scholar 

  • Towler, D. A., Adams, S. P., Eubanks, S. R., Towery, D. S., Jakson-Machelski, E., Glaser, L. and Gordon, J. I. (1988) J. Biol. Chem., 263, 1784–1790.

    Google Scholar 

  • Vuister, G. W. and Bax, A. (1992) J. Magn. Reson., 98, 428–435.

    Google Scholar 

  • Wagner, G., Braun, W., Havel, T. F., Schaumann, T., Gō, N. and Wüthrich, K. (1987) J. Mol. Biol., 196, 611–639.

    Google Scholar 

  • Wedegaertner, P. B., Wilson, P. T. and Bourne, H. R. (1995) J. Biol. Chem., 270, 503–506.

    Google Scholar 

  • Wishart, D. S. and Sykes, B. D. (1994) Methods Enzymol., 239, 363–392.

    Google Scholar 

  • Wüthrich, K., Billeter, M. and Braun, W. (1983) J. Mol. Biol., 169, 949–961.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • Yamagata, K., Goto, K., Kuo, C.-H., Kondo, H. and Miki, N. (1990) Neuron, 2, 469–476.

    Google Scholar 

  • Yamazaki, T., Forman-Kay, J. D. and Kay, L. E. (1993) J. Am. Chem. Soc., 115, 11054–11055.

    Google Scholar 

  • Zhang, M., Tanaka, T. and Ikura, M. (1995) Nat. Struct. Biol., 2, 758–767.

    Google Scholar 

  • Zhang, O., Kay, L. E., Olivier, J. P. and Forman-Kay, J. D. (1994) J. Biomol. NMR, 4, 845–858.

    Google Scholar 

  • Zheng, J., Knighton, D. R., Xuong, N.-H., Taylor, S. S., Sowadski, J. M. and Ten Eyck, L. F. (1993) Protein Sci., 2, 1559–1573.

    Google Scholar 

  • Zozulya, S. and Stryer, L. (1992) Proc. Natl. Acad. Sci. USA, 89, 11569–11573.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, T., Ames, J.B., Kainosho, M. et al. Differential Isotope Labeling Strategy for Determining the Structure of Myristoylated Recoverin by NMR Spectroscopy. J Biomol NMR 11, 135–152 (1998). https://doi.org/10.1023/A:1008212316986

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008212316986

Navigation