Skip to main content
Log in

Ginkgo biloba Extract (EGb 761) Pretreatment Limits Free Radical Oxidative Stress in Patients Undergoing Coronary Bypass Surgery

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

A growing body of evidence supports the trigger role of free radicals in the delayed functional and metabolic myocardial recovery following cardiopulmonary bypass (CPB) in humans, thus opening the field to specific therapies. This clinical study was designed to evaluate, in 15 patients undergoing aortic valve replacement, whether the extent of CPB- and reperfusion-induced lipid peroxidation, ascorbate depletion, tissue necrosis, and cardiac dysfunction is reduced by orally administered EGb 761, a Ginkgo biloba extract withpotent in vitro antiradical properties. Patients received either EGb 761 (Tanakan, 320 mg/day, n = 8) or a matching placebo (n = 7) for 5 days before surgical intervention. Plasma samples were obtained from the peripheral circulation and the coronary sinus at crucial stages of the operation (i.e., before incision, during ischemia, and within the first 30 minutes post-unclamping), and up to 8 days postoperatively. Upon aortic unclamping, EGb 761 inhibited the transcardiac release of thiobarbituric acid species (p ` 0.05), as assessed by high-performance liquid chromatography, and attenuated the early (5–10 minute) decrease in dimethylsulfoxide/ascorbyl free radical levels, an electron spin resonance index of the plasma ascorbate pool (p ` 0.05). EGb 761 also significantly reduced the more delayed leakage of myoglobin (p = 0.007) and had an almost significant effect on ventricular myosin leakage (p = 0.053, 6 days postoperatively). The clinical outcome of recovery of treated patients was improved, but not significantly, compared with untreated patients. Our results demonstrate the usefulness of adjuvant EGb 761 therapy in limiting oxidative stress in cardiovascular surgery and suggest the possible role of highly bioavailable terpene constituents of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Heleen M Oudemans-van Straaten, Angelique ME Spoelstra-de Man & Monique C de Waard

References

  1. DeFeudis FV. Ginkgo biloba Extract (EGb 761): Pharmacological Activities and Clinical Applications. Paris: Elsevier, 1991.

    Google Scholar 

  2. Drieu K. Préparation et définition de l'extrait de Ginkgo biloba. Presse Méd 1986;15:1455–1457.

    Google Scholar 

  3. Kleijnen J, Knipschild P. Ginkgo biloba. Lancet 1992;340:1136–1139.

    Google Scholar 

  4. Pincemail J, Dupuis M, Nasr C, et al. Superoxide anion scavenging effect and superoxide dismutase activity of Ginkgo biloba extract. Experientia 1989;45:708–712.

    Google Scholar 

  5. Tosaki A, Droy-Lefaix MT, Pali T, Das DK. Effects of SOD, catalase, and a novel antiarrhythmic drug, EGb 761, on reperfusion-induced arrhythmias in isolated rat hearts. Free Radic Biol Med 1993;14:361–370.

    Google Scholar 

  6. Haramaki N, Aggarwal S, Kawabata T, Droy-Lefaix MT, Packer L. Effects of natural antioxidant Ginkgo biloba extract (EGb 761) on myocardial ischemia-reperfusion injury. Free Radic Biol Med 1994;16:789–794.

    Google Scholar 

  7. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985;312:159–163.

    Google Scholar 

  8. Bolli R. Oxygen-derived free radicals and myocardial reperfusion injury: An overview. Cardiovasc Drugs Ther 1991;5:249–268.

    Google Scholar 

  9. Hearse DJ. Ischaemia, reperfusion, and the determinants of tissue injury. Cardiovasc Drugs Ther 1990;4:767–776.

    Google Scholar 

  10. Kilgore KS, Lucchesi BR. Reperfusion injury after myocardial infarction: The role of free radicals and the inflammatory response. Clin Biochem 1993;26:359–370.

    Google Scholar 

  11. Royston D, Fleming JS, Desai JB, Westaby S, Taylor KM. Increased production of peroxidation products associated with cardiac operations. Evidence for free radical generation J Thorac Cardiovasc Surg 1986;91:759–766.

    Google Scholar 

  12. Ferreira R, Llesuy S, Milei J, et al. Assessment of myocardial oxidative stress in patients after myocardial revascularization. Am Heart J 1988;115:307–312.

    Google Scholar 

  13. Menasché P, Antebi H, Alcindor L-G, et al. Iron chelation by deferoxamine inhibits lipid peroxidation during cardiopulmonary bypass in humans. Circulation 1990;82(Suppl IV):IV390–IV396.

    Google Scholar 

  14. Davies SW, Underwood SM, Wickens DG, Feneck RO, Dormandy TL, Walesby RK. Systemic pattern of free radical generation during coronary bypass surgery. Br Heart J 1990;64:236–240.

    Google Scholar 

  15. Coghlan JG, Flitter WD, Holley AE, et al. Detection of free radicals and cholesterol hydroperoxides in blood taken from the coronary sinus of man during percutaneous transluminal coronary angioplasty. Free Radic Res Commun 1991;14:409–417.

    Google Scholar 

  16. Prasad K, Kalra J, Bharadwaj B, Chaudhary AK. Increased oxygen free radical activity in patients on cardiopulmonary bypass undergoing aortocoronary bypass surgery. Am Heart J 1992;123:37–45.

    Google Scholar 

  17. Murphy ME, Kolvenbach R, Aleksis M, Hansen R, Sies H. Antioxidant depletion in aortic crossclamping ischemia: Increase of the plasma α-tocopheryl quinone/α-tocopherol ratio. Free Radic Biol Med 1992;13:95–100.

    Google Scholar 

  18. Davies SW, Duffy JP, Wickens DG, et al. Time-course of free radical activity during coronary artery operations with cardiopulmonary bypass. J Thorac Cardiovasc Surg 1993;105:979–987.

    Google Scholar 

  19. Coghlan JG, Flitter WD, Clutton SM, Ilsley CDJ, Rees A, Slater TF. Lipid peroxidation and changes in vitamin E levels during coronary artery bypass grafting. J Thorac Cardiovasc Surg 1993;106:268–274.

    Google Scholar 

  20. Lazzarino G, Raatikainen P, Nuutinen M, et al. Myocardial release of malondialdehyde and purine compounds during coronary bypass surgery. Circulation 1994;90:291–297.

    Google Scholar 

  21. Coghlan JG, Flitter WD, Clutton SM, et al. Allopurinol pretreatment improves postoperative recovery and reduces lipid peroxidation in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 1994;107:248–256.

    Google Scholar 

  22. Popovic Z, Fabian J, Djujic I, Huskic R, Nezic D, Vucinic M. Effects of allopurinol on oxygen stress status during open heart surgery. Int J Cardiol 1994;44:123–129.

    Google Scholar 

  23. Menasché P, Pasquier C, Bellucci S, Lorente P, Jaillon P, Piwnica A. Deferoxamine reduces neutrophil-mediated free radical production during cardiopulmonary bypass in man. J Thorac Cardiovasc Surg 1988;96:582–589.

    Google Scholar 

  24. Pepper JR, Mumby S, Gutteridge JMC. Transient iron-overload with bleomycin-detectable iron present during cardiopulmonary bypass surgery. Free Radic Res 1994;21:53–58.

    Google Scholar 

  25. Ferrari R, Alfieri O, Curello S, et al. Occurrence of oxidative stress during reperfusion of the human heart. Circulation 1990;81:201–211.

    Google Scholar 

  26. Barsacchi R, Pelosi G, Maffei S, et al. Myocardial vitamin E is consumed during cardiopulmonary bypass: Indirect evidence of free radical generation in human ischemic heart. Int J Cardiol 1992;37:339–343.

    Google Scholar 

  27. Pietri S, Séguin JR, d'Arbigny P, Culcasi M. Ascorbyl free radical: A noninvasive marker of oxidative stress in human open-heart surgery. Free Radic Biol Med 1994;16:523–528.

    Google Scholar 

  28. Janssen M, Koster JF, Bos E, de Jong JW. Malondialdehyde and glutathione production in isolated perfused human and rat hearts. Circ Res 1993;73:681–688.

    Google Scholar 

  29. Ballmer PE, Reinhart WH, Jordan P, Bühler E, Moser UK, Gey KF. Depletion of plasma vitamin C but not vitamin E in response to cardiac operations. J Thorac Cardiovasc Surg 1994;108:311–320.

    Google Scholar 

  30. Tortolani AJ, Powell SR, Misik V, Weglicki WB, Pogo GJ, Kramer JH. Detection of alkoxyl and carbon-centered free radicals in coronary sinus blood from patients undergoing elective cardioplegia. Free Radic Biol Med 1993;14:421–426.

    Google Scholar 

  31. Opie LH. Reperfusion injury and its pharmacologic modification. Circulation 1989;80:1049–1062.

    Google Scholar 

  32. Weglicki WB, Mak IT, Simic MG. Mechanisms of cardiovascular drugs as antioxidants. J Mol Cell Cardiol 1990;22:1199–1208.

    Google Scholar 

  33. Yau TM, Weisel RD, Mickle DAG, et al. Vitamin E for coronary bypass operations. A prospective, double-blind, randomized trial. J Thorac Cardiovasc Surg 1994;108:302–310.

    Google Scholar 

  34. Eddy L, Hurvitz R, Hochstein P. A protective role for ascorbate in induced ischemic arrest associated with cardiopulmonary bypass. J Appl Cardiol 1990;5:409–414.

    Google Scholar 

  35. Taggart DP, Young V, Hooper J, et al. Lack of cardioprotective efficacy of allopurinol in coronary artery surgery. Br Heart J 1994;71:177–181.

    Google Scholar 

  36. Flaherty JT, Pitt B, Gruber JW, et al. Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation 1994;89:1982–1991.

    Google Scholar 

  37. Pietri S, Culcasi M, Stella L, Cozzone PJ. Ascorbyl free radical as a reliable indicator of free-radical-mediated myocardial ischemic and post-ischemic injury. A real-time continuous-flow ESR study. Eur J Biochem 1990;193:845–854.

    Google Scholar 

  38. Minetti M, Forte T, Soriani M, Quaresima V, Menditto A, Ferrari M. Iron-induced ascorbate oxidation in plasma as monitored by ascorbate free radical formation. No spin-trapping evidence for the hydroxyl radical in iron-overloaded plasma. Biochem J 1992;282:459–465.

    Google Scholar 

  39. Narkowicz CK, Vial JH, McCartney PW. Hyperbaric oxygen therapy increases free radical levels in the blood of humans. Free Radic Res Commun 1993;19:71–80.

    Google Scholar 

  40. Buettner GR, Jurkiewicz BA. Ascorbate free radical as a marker of oxidative stress: An EPR study. Free Radic Biol Med 1993;14:49–55.

    Google Scholar 

  41. Roginsky VA, Stegmann HB. Ascorbyl radical as natural indicator of oxidative stress: Quantitative regularities. Free Radic Biol Med 1994;17:93–103.

    Google Scholar 

  42. Wong SHY, Knight JA, Hopfer SM, Zaharia O, Learch CN Jr, Sunderman FW Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehydethiobarbituric acid adduct. Clin Chem 1987;33:214–220.

    Google Scholar 

  43. Sharma MK, Buettner GR, Spencer KT, Kerber RE. Ascorbyl free radical as a real-time marker of free radical generation in briefly ischemic and reperfused hearts. An electron paramagnetic resonance study. Circ Res 1994;74:650–658.

    Google Scholar 

  44. Séguin J, Saussine M, Ferrière M, et al. Comparison of myoglobin and creatine kinase MB levels in the evaluation of myocardial injury after cardiac operations. J Thorac Cardiovasc Surg 1988;95:294–297.

    Google Scholar 

  45. Séguin JR, Saussine M, Ferrière M, et al. Myosin: A highly sensitive indicator of myocardial necrosis after cardiac operations. J Thorac Cardiovasc Surg 1989;98:397–401.

    Google Scholar 

  46. Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner, DDM. The antioxidant role of vitamin C. Adv Free Radic Biol Med 1986;2:419–444.

    Google Scholar 

  47. Halliwell B, Gutteridge JMC. The antioxidants of human extracellular fluids. Arch Biochem Biophys 1990;280:1–8.

    Google Scholar 

  48. Scarpa M, Stevanato R, Viglino P, Rigo A. Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen. Effect of superoxide dismutase. J Biol Chem 1983;258:6695–6697.

    Google Scholar 

  49. Sharma MK, Buettner GR. Interaction of vitamin C and vitamin E during free radical stress in plasma: An ESR study. Free Radic Biol Med 1993;14:649–653.

    Google Scholar 

  50. Soriani M, Pietraforte D, Minetti M. Antioxidant potential of anaerobic human plasma: Role of serum albumin and thiols as scavengers of carbon radicals. Arch Biochem Biophys 1994;312:180–188.

    Google Scholar 

  51. Apple FS. Acute myocardial infarction and coronary reperfusion. Serum cardiac markers for the 1990s. Am J Clin Pathol 1992;97:217–226.

    Google Scholar 

  52. Fourtillan JB, Brisson AM, Girault J, et al. Propriétés pharmacocinétiques du bilobalide et des ginkgolides A et B chez le sujet sain après administrations intraveineuses et orales d'extrait de Ginkgo biloba (EGb 761). Thérapie 1995;50:137–144.

    Google Scholar 

  53. Pietri S, Culcasi M, Chalier F, Séguin J, et al. Cardioprotective effects of terpenic constituents of Ginkgo biloba extract (EGb 761) ginkgolides A (GA) and B (GB) and bilobalide (BI). Effects of low doses administered in vitro or in vivo. (abstr) J Mol Cell Cardiol 1994;26:VI.

    Google Scholar 

  54. Braquet P, ed. Ginkgolides: Chemistry, Biology, Pharmacology and Clinical Perspectives, Vol. 1. Barcelona: JR Prous Science, 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietri, S., Séguin, J.R., d'Arbigny, P. et al. Ginkgo biloba Extract (EGb 761) Pretreatment Limits Free Radical Oxidative Stress in Patients Undergoing Coronary Bypass Surgery. Cardiovasc Drugs Ther 11, 121–131 (1997). https://doi.org/10.1023/A:1007728729844

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007728729844

Navigation