Skip to main content
Log in

Functional analysis of the proteasome regulatory particle

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We have developed S. cerevisiae as a model system for mechanistic studies of the 26S proteasome. The subunits of the yeast 19S complex, or regulatory particle (RP), have been defined, and are closely related to those of mammalian proteasomes. The multiubiquitin chain binding subunit (S5a/Mcb1/Rpn10) was found, surprisingly, to be nonessential for the degradation of a variety of ubiquitin-protein conjugates in vivo. Biochemical studies of proteasomes from Δrpn10 mutants revealed the existence of two structural subassemblies within the RP, the lid and the base. The lid and the base are both composed of 8 subunits. By electron microscopy, the base and the lid correspond to the proximal and distal masses of the RP, respectively. The base is sufficient to activate the 20S core particle for degradation of peptides, but the lid is required for ubiquitin-dependent degradation. The lid subunits share sequence motifs with components of the COP9/signalosome complex, suggesting that these functionally diverse particles have a common evolutionary ancestry. Analysis of equivalent point mutations in the six ATPases of the base indicate that they have well-differentiated functions. In particular, mutations in one ATPase gene, RPT2, result in an unexpected defect in peptide hydrolysis by the core particle. One interpretation of this result is that Rpt2 participates in gating of the channel through which substrates enter the core particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Löwe J, Stock D, Jap B, Zwickl P, Baumeister W & Huber R (1995) Science 268: 533–539

    Google Scholar 

  2. Baumeister W, Walz J, Zuhl F & Seemuller E (1998) Cell 92: 367–380

    Google Scholar 

  3. Pickart C (1997) FASEB J. 11: 1055–1066

    Google Scholar 

  4. Glickman MH, Rubin DM, Fried VA & Finley D (1998) Mol. Cell. Biol. 18: 3149–3162

    Google Scholar 

  5. Hoffman L & Rechsteiner M (1994) J. Biol. Chem. 269: 16890–16895

    Google Scholar 

  6. DeMartino GN, Moomaw CR, Zagnitko OP, Proske RJ, Ma CP, Afendis SJ, Swaffield JC & Slaughter CA (1994) J. Biol. Chem. 269: 20878–20884

    Google Scholar 

  7. Groll M, Ditzel L, Löwe J, Stock D, Bochtler m, Bartunik HD & Huber R (1997) Nature 386: 463–477

    Google Scholar 

  8. Fujimuro M, Tanaka K, Yokosawa H & Toh-e A (1998) FEBS Lett. 423: 149–154

    Google Scholar 

  9. Patel S & Latterich m (1998) Trends Cell Biol. 8: 65–71

    Google Scholar 

  10. Beyer A (1997) Prot. Sci. 6: 2043–2058

    Google Scholar 

  11. Finley D, et al. (1998) Trends Biochem. Sci. 23: 244–245

    Google Scholar 

  12. Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) J. Biol. Chem. 269: 7059–7061

    Google Scholar 

  13. Deveraux Q, Jensen C & Rechsteiner M (1995) J. Biol. Chem. 270: 23726–23729

    Google Scholar 

  14. van Nocker S, Sadis S, Rubin DM, Glickman MH, Fu H, Coux O, Wefes I, Finley D & Vierstra RD (1996) Mol. Cell. Biol. 11: 6020–6028

    Google Scholar 

  15. van Nocker S, Deveraux Q, Rechsteiner M & Vierstra RD (1996) Proc. Natl. Acad. Sci. 93: 856–860

    Google Scholar 

  16. Kominami K, Okura N, Kawamura M, DeMartino GN, Slaughter CA, Shimbara N, Chung CH, Fujimura M, Yokosawa H, Shimizu Y, Tanahashi N, Tanaka K & Toh-e A (1997) Mol. Biol. Cell 8: 171–187

    Google Scholar 

  17. Haracska L & Udvardy A (1997) FEBS Lett. 412: 331–336

    Google Scholar 

  18. Haracska L & Udvardy A (1995) Eur. J. Biochem. 231: 720–725

    Google Scholar 

  19. Young P, Deveraux Q, Beal RE, Pickart CM & Rechsteiner M (1998) J. Biol. Chem. 273: 5461–5467

    Google Scholar 

  20. Fu H, Sadis S, Rubin DM, Glickman MH, van Nocker S, Finley D& Vierstra RD (1998) J. Biol. Chem. 273: 1970–1989

    Google Scholar 

  21. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA & Finley D (1998) Cell 94: 615–623

    Google Scholar 

  22. Hofmann K & Bucher P (1998) Trends Biol. Chem. 23: 204–205

    Google Scholar 

  23. Aravind L & Ponting CP (1998) Prot. Sci. 7: 1250–1254

    Google Scholar 

  24. Wei N, Tsuge T, Serino G, Dohmae N, Takio K, Matsui M & Deng, XW (1998) Curr. Biol. 8: 919–922

    Google Scholar 

  25. Seeger M, Kraft R, Ferrel K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M & Dubiel W (1998) FASEB J. 12: 469–478

    Google Scholar 

  26. Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, Müller SA, Engel A, De Mot R & Baumeister W(1998) J. Mol. Biol. 277: 13–25

    Google Scholar 

  27. Zwickl P, Woo KM, Klenk HP & Goldberg, AL (Submitted).

  28. Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S & Finley D (1998) EMBO 17: 4909–4919

    Google Scholar 

  29. Lupas A & Baumeister W (1997) Trends Biochem. Sci. 22: 195–196

    Google Scholar 

  30. Gottesman S, Maurizi MR & Wickner S (1997) Cell 91: 435–438

    Google Scholar 

  31. Gottesman S, Wickner S & Maurizi MR (1997) Genes Devel. 11: 815–823

    Google Scholar 

  32. Hershko A, Leshinsky E, Ganoth D & Heller H (1984) Proc. Natl. Acad. Sci. USA 81: 1619–1623

    Google Scholar 

  33. Ditzel L, Lowe J, Stock D, Stetter KO, Huber H, Huber R & Steinbacher S (1998) Cell 93: 125–138

    Google Scholar 

  34. Fenton WA & Horwich AL (1997) Protein Science 6: 743–760

    Google Scholar 

  35. Horovitz A (1998) Curr. Op. Struc. Biol. 8: 93–100

    Google Scholar 

  36. Kim S, Willison KR & Horwich AL (1994) Trends Biochem. Sci. 19: 543–548

    Google Scholar 

  37. Ghislain M, Udvardy A & Mann C (1993) Nature 366: 358–361

    Google Scholar 

  38. Schnall R, Mannhaupt G, Stuka R, Tauer R, Ehnle S, Schwarzlose C, Vetter I & Feldmann H (1994) Yeast 10: 1141–1155

    Google Scholar 

  39. Russell SJ, Sathyanarayana UG & Johnston SA (1996) J. Biol. Chem. 271: 32810–32817 28

    Google Scholar 

  40. Chu-Ping M, Vu JH, Proske RJ, Slaughter CA & DeMartino GN (1992) J. Biol. Chem. 269: 3539–3547

    Google Scholar 

  41. Hough R, Pratt G & Rechsteiner M (1986) J. Biol. Chem. 261: 2400–2408

    Google Scholar 

  42. Hough R, Pratt G & Rechsteiner M (1987) J. Biol. Chem. 262: 8303–8313

    Google Scholar 

  43. Asano K, Vornlocher HP, Richter-Cook NJ, Merrick WC, Hinnebusch AG & Hershey JWB (1997) J. Biol. Chem. 272: 27042–27052

    Google Scholar 

  44. Asano K, Kinzy TG, Merrick WC & Hershey JWB (1997) J. Biol. Chem. 272: 1101–1109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glickman, M.H., Rubin, D.M., Fu, H. et al. Functional analysis of the proteasome regulatory particle. Mol Biol Rep 26, 21–28 (1999). https://doi.org/10.1023/A:1006928316738

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006928316738

Navigation