Skip to main content
Log in

Proteasome-dependent degradation of human CDC25B phosphatase

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The CDC25 dual specificity phosphatase is a universal cell cycle regulator. The evolutionary conservation of this enzyme from yeast to man bears witness to its major role in the control of cyclin-dependent kinases (CDK) activity that are central regulators of the cell cycle machinery. CDC25 phosphatase both dephosphorylates and activates CDKs. Three human CDC25s have been identified. CDC25A is involved in the control of G1/S, and CDC25C at G2/M throught the activation of CDK1-cyclin B. The exact function of CDC25B however remains elusive. We have found that CDC25B is degraded by the proteasome pathway in vitro and in vivo. This degradation is dependent upon phosphorylation by the CDK1-cyclin A complex, but not by CDK1-cyclin B. Together with the observations of others made in yeast and mammals, our results suggest that CDC25B might act as a ‘mitotic starter’ triggering the activation of an auto-amplification loop before being degraded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nigg E (1995) BioEssays 17: 471–480

    Google Scholar 

  2. Morgan DO (1995) Nature 374: 131–134

    Google Scholar 

  3. Lundgren K, Walworth R, Booher R, Dembski M, Kirschner M & Beach D (1991) Cell 45: 145–153

    Google Scholar 

  4. Watanabe H, Fukuchi K, Takagi Y, Tomoyasu S, Tsuruoka N & Gomi K (1995) Biochim Biophys Acta 1263(3): 275–280

    Google Scholar 

  5. Liu F, Stanton J, Wu Z & Piwnica-Worms H (1997) Mol. Cell. Biol. 17: 571–583

    Google Scholar 

  6. Kumagai A & Dunphy W (1991) Cell 64: 903–914

    Google Scholar 

  7. Hoffmann I & Karsenti E (1994) J Cell Sci 18: 75–79

    Google Scholar 

  8. Sadhu K, Reed SI, Richardson H & Russell P (1990) Proc Natl Acad Sci.USA 87: 5139–5143

    Google Scholar 

  9. Nagata A, Igarashi M, Jinno S, Suto K & Okayama H (1991) The new Biologist 3: 959–968

    Google Scholar 

  10. Galaktionov K & Beach D (1991) Cell 67: 1181–1194

    Google Scholar 

  11. Baldin V, Cans C, Superti-Furga G & Ducommun B (1997) Oncogene 14: 2485–2495

    Google Scholar 

  12. Hoffmann I, Clarke P, Marcote MJ, Karsenti E & Draetta G (1993) EMBO J 12: 53–63

    Google Scholar 

  13. Hoffmann I, Draetta GF & Karsenti E (1994) EMBO J 13: 4302–4310

    Google Scholar 

  14. Jinno S, Suto K, Nagata A, Igashari M, Kanaoka Y, Nojima H & Okayama H (1994) EMBO J 13: 1549–1556

    Google Scholar 

  15. Izumi T & Maller JL (1993) Mol Cell Biol 4: 1337–1350

    Google Scholar 

  16. Garner-Hamrick PA & Fisher C (1998) Int J Cancer 76: 720–728

    Google Scholar 

  17. Gabrielli BG, De Souza CPC, Tonks ID, Clarck JM, Hatward NK & Ellem KAO (1996) J Cell Sci 109: 1081–1093

    Google Scholar 

  18. Nishijima H, Nishitani H, Seki T & Nishimoto T (1997) J Cell Biol 138 1105–1016

    Google Scholar 

  19. Glotzer M, Murray A& Kirschner M(1990) Nature 349: 132–138

    Google Scholar 

  20. Gabrielli B, Clark JM, McCormack AK & Ellem KA (1997) J Biol Chem 272: 28607–28614

    Google Scholar 

  21. Lammer C, Wagerer S, Saffrich R, Mertens D, Ansorge W & Hoffman I (1998) J Cell Sci 111: 2445–2453

    Google Scholar 

  22. Baldin V, Cans C, Knibiehler M& Ducommun B (1997) J Biol Chem 272: 32731–32735

    Google Scholar 

  23. Zoller M, Nelson N & Taylor S (1981) J Biol Chem 256: 10837–10842

    Google Scholar 

  24. Moreno S, Nurse P & Russell P (1990) Nature 344: 549–552

    Google Scholar 

  25. Ducommun B, Draetta G, Young P & Beach D (1990) Biochem Biophys Res Commun 167: 301–309

    Google Scholar 

  26. Nefsky B & Beach D (1996) EMBO J 15: 1301–1312

    Google Scholar 

  27. Palombella VJ, Rando OJ, Golberg AL & Maniatis T (1994) Cell 78: 773–785

    Google Scholar 

  28. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ & Schreiber SL (1995) Science 268: 726–730

    Google Scholar 

  29. Kumagaï A & Dunphy WG (1996) Science 273: 1377–1380

    Google Scholar 

  30. Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H & Elledge S (1997) Science 277

  31. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS & Piwnica-Worms H (1997) Science 277: 1501–1505

    Google Scholar 

  32. Zeng Y, Forbes KC, Wu Z, Moreno S, Piwnica-Worms H & Enoch T (1998) Nature 395: 507–10

    Google Scholar 

  33. Pagano M, Pepperkok R, Verde F, Ansorge W & Draetta G (1992) EMBO J 11: 961–971

    Google Scholar 

  34. Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M & Beach D (1995) Science 269: 1575–1577

    Google Scholar 

  35. Gasparotto D, Maestro R, Piccinin S, Vukosavljevic T, Barzan L, Sulfaro S & Boiocchi M (1997) Cancer Research 57: 2366–2368

    Google Scholar 

  36. Kudo Y, Yasui W, Ue T, Yamamoto S, Yokozaki H, Nikai H & Tahara E (1997) Jpn J Cancer Res 88: 947–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cans, C., Ducommun, B. & Baldin, V. Proteasome-dependent degradation of human CDC25B phosphatase. Mol Biol Rep 26, 53–57 (1999). https://doi.org/10.1023/A:1006912105352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006912105352

Navigation