Skip to main content
Log in

The precursor of the F1β subunit of the ATP synthase is covalently modified upon binding to plant mitochondria

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We present evidence for a unique covalent modification of a nuclear-encoded precursor protein targeted to plant mitochondria. We investigated the early events of in vitro import for the mitochondrial precursor of the ATP synthase F1β subunit from Nicotiana plumbaginifolia (pF1β) into plant mitochondria. When pF1β of 59 kDa was incubated with mitochondria isolated from different higher-plant species, a band of 61 kDa was generated. The 61 kDa protein was a covalently modified form of the 59 kDa pF1β. The modification was dependent on the 25 amino acid long N-terminal region of the presequence of pF1β. The modification was catalysed by an enzyme located in the outer mitochondrial membrane which was specific for higher plants and could not be washed off from the membrane by urea, KCl or EDTA. The modification was ATP- and Ca2+-dependent, but it was not affected by inhibitors of protein kinases. No inhibition of the modification was observed with phosphatase, methylation or acylation inhibitors. The modification occurs prior to translocation through the mitochondrial outer membrane. Inhibition of the modification process does not affect the import of the precursor protein, hence precursor modification was not a prerequisite for import. Both the modified and the unmodified pF1β proteins were strongly associated with the mitochondrial outer membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bairoch, A., Bucher, P. and Hofmann, K. 1997. The PROSITE database, its status in 1997. Nucl. Acids Res. 25: 217–221.

    Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Google Scholar 

  • Braun, H.P. and Schmitz, U.K. 1995. The bifunctional cytochrome c reductase/processing peptidase complex from plant mitochondria. J. Bioenerg. Biomembr. 27: 423–436.

    Google Scholar 

  • Brix, J., Dietmeier, K. and Pfanner, N. 1997. Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272: 20730–20735.

    Google Scholar 

  • Caplan, A.J. Cyr, D.M. and Douglas, M.G. 1992. YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell 71: 1143–1155.

    Google Scholar 

  • Cyr, D.M. and Douglas, M.G. 1991. Early events in the trans-port of proteins into mitochondria. Import competition by a mitochondrial presequence. J. Biol. Chem. 266: 21700–21708.

    Google Scholar 

  • Dietmeier, K., Honlinger, A., Bomer, U., Dekker, P.J., Eckerskorn, C., Lottspeich, F., Kubrich, M. and Pfanner, N. 1997. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388: 195–200.

    Google Scholar 

  • Eriksson, A., Sjöling, S. and Glaser, E. 1993. A general processing proteinase of spinach leaf mitochondria is associated with the bc1 complex of the respiratory chain. In: A. Brennicke and U. Kuch (Eds.), Plant Mitochondria, VCH Verlagsgesellschaft, Germany, pp. 233–241.

    Google Scholar 

  • Glaser, S.M. and Cumsky, M.G. 1990a. A synthetic presequence reversibly inhibits protein import into yeast mitochondria. J. Biol. Chem. 265: 8808–8816.

    Google Scholar 

  • Glaser, S.M. and Cumsky, M.G. 1990b. Localization of a syn-thetic presequence that blocks protein import into mitochondria. J. Biol. Chem. 265: 8817–8822.

    Google Scholar 

  • Glaser, E., Sjoling, S., Tanudji, M. and Whelan, J. 1998. Mito-chondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol. Biol. 38: 311–338.

    Google Scholar 

  • Hachiya. N., Komiya, T., Alam, R., Iwahashi, J., Sakaguchi, M., Omura, T. and Mihara, K. 1994. MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J. 13: 5146–5154.

    Google Scholar 

  • Hachiya, N., Mihara, K., Suda, K., Horst, M., Schatz, G. and Lith-gow, T. 1995. Reconstruction of the initial steps of mitochondrial protein import. Nature 376: 705–709.

    Google Scholar 

  • Hajek, P. and Bedwell, D.M. 1994. Characterization of the mito-chondrial binding and import properties of purified yeast F 1-ATPase β subunit precursor. Import requires external ATP. J. Biol. Chem. 269: 7192–7200.

    Google Scholar 

  • Heist, E.K., Srinivasan, M. and Schulman, H. 1998. Phosphoryla-tion at the nuclear localization of Ca 2 + /calmodulin-dependent protein kinase II blocks its nuclear targeting. J. Biol. Chem. 273: 19763–19771.

    Google Scholar 

  • Hines, V., Brandt, A., Griffiths, G., Horstmann, H., Brutsch, H. and Schatz, G. 1990. Protein import into yeast mitochondria is accelerated by the outer membrane protein MAS70. EMBO J. 9: 3191–3200.

    Google Scholar 

  • Honlinger, A., Bomer, U., Alconada, A., Eckerskorn, C. Lott-speich, F., Dietmeier, K. and Pfanner, N. 1996. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import. EMBO J. 15: 2125–2137.

    Google Scholar 

  • Jänsch, L., Kruft, V., Schmitz, U.K. and Braun, H.P. 1998. Unique composition of the preprotein translocase of the outer mitochon-drial membrane from plants. J. Biol. Chem. 273: 17251–17257.

    Google Scholar 

  • Kiebler, M., Pfaller, R., Sollner, T., Griffiths, G., Horstmann, H., Pfanner, N. and Neupert, W. 1990. Identification of a mitochon-drial receptor complex required for recognition and membrane insertion of precursor proteins. Nature 348: 610–616.

    Google Scholar 

  • Klaus, C., Guiard, B., Neupert, W. and Brunner, M. 1996. Determinants in the presequence of cytochrome b2 for import into mitochondria and for proteolytic processing. Eur. J. Biochem. 236: 856–861.

    Google Scholar 

  • Knorpp, C., Hugosson, M. and Glaser, E. 1992. Temperature de-pendence and kinetics of plant mitochondrial protein import. In: H. Lambers and L. van der Plas (Eds.), Molecular, Biochemical and Physiological Aspects of Plant Respiration, SPB Academic Publishing, The Hague, Netherlands, pp. 361–365.

    Google Scholar 

  • Komiya, T., Hachiya, N., Sakaguchi, M., Omura, T. and Mihara, K. 1994. Recognition of mitochondria-targeting signals by a. cytosolic import stimulation factor, MSF. J. Biol. Chem. 269: 30893–30897.

    Google Scholar 

  • Komiya, T., Rospert, S., Koehler, C., Looser, R., Schatz, G. and Mihara, K. 1998. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the ‘acid chain’ hypothesis. EMBO J. 17: 3886–3898.

    Google Scholar 

  • Kunkele, K.P., Heins, S., Dembowski, M., Nargang, F.E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S. and Neu-pert, W. 1998. The preprotein translocation channel of the outer membrane of mitochondria. Cell 93: 1009–1019.

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Google Scholar 

  • Lain, B., Yanez, A., Iriarte, A. and Martinez-Carrion, M. 1998. Aminotransferase variants as the role of the N-terminal region of a mature protein in mitochondrial precursor import and processing. J. Biol. Chem. 273: 4406–4415.

    Google Scholar 

  • Luciano, P. and Geli, V. 1996. The mitochondrial processing peptidase: function and specificity. Experientia 52: 1077–1082.

    Google Scholar 

  • Moczko, M., Bomer, U., Kubrich, M., Zufall, N., Honlinger, A. and Pfanner, N. 1997. The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for pre-proteins with N-terminal targeting sequences. Mol. Cell Biol. 17: 6574–6584.

    Google Scholar 

  • Murakami, K., Tanase, S., Morino, Y. and Mori, M. 1992. Pre-sequence binding factor-dependent and-independent import of proteins into mitochondria. J. Biol. Chem. 267: 13119–13122.

    Google Scholar 

  • Neupert, W. 1997. Protein import into mitochondria. Annu. Rev. Biochem. 66: 863–917.

    Google Scholar 

  • Pfanner, N., Craig, E.A. and Honlinger, A. 1997. Mitochondrial preprotein translocase. Annu. Rev. Cell Dev. Biol. 13: 25–51.

    Google Scholar 

  • Pical, C., Fredlund, K.M., Petit, P.X., Sommarin, M. and Møller, I.M. 1993. The outer membrane of plant mitochondria contains a calcium-dependent protein kinase and multiple phosphoproteins. FEBS Lett. 336: 347–351.

    Google Scholar 

  • Rapaport, D., Neupert, W. and Lill, R. 1997. Mitochondrial protein import. Tom40 plays a major role in targeting and translocation of preproteins by forming a specific binding site for the presequence. J. Biol. Chem. 272: 18725–18731.

    Google Scholar 

  • Schägger, H., and von Jagow, G. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368–379.

    Google Scholar 

  • Schneider, G., Sjöling, S., Wallin, E., Wrede, P., Glaser, E. and von Heijne, G. 1998. Feature-extraction from endopeptidase cleavage sites in mitochondrial targeting peptides. Proteins 30: 49–60.

    Google Scholar 

  • Sjöling, S. and Glaser, E. 1998. Mitochondrial targeting peptides in plants. Trends Plant Sci. 3: 136–140.

    Google Scholar 

  • Sjöling, S., Eriksson, A.C. and Glaser, E. 1994. A helical element in the C-terminal domain of the N. plumbaginifolia F1 β presequence is important for recognition by the mitochondrial processing peptidase. J. Biol. Chem. 269: 32059–32062.

    Google Scholar 

  • Smagula, C. and Douglas, M.G. 1988. Mitochondrial import of the ADP/ATP carrier protein in Saccharomyces cerevisiae. Sequences required for receptor binding and membrane translocation. J. Biol. Chem. 263: 6783–6790.

    Google Scholar 

  • Szigyarto, C., Dessi, P., Smith, M.K., Knorpp, C., Harmey, M.A., Day, D.A., Glaser, E. and Whelan, J. 1998. A matrix-located processing peptidase of plant mitochondria. Plant Mol. Biol. 36: 171–181.

    Google Scholar 

  • Terada, K., Kanazawa, M., Bukau, B. and Mori, M. 1997. The human DnaJ homologue dj2 facilitates mitochondrial protein import and luciferase refolding. J. Cell Biol. 139: 1089–1095.

    Google Scholar 

  • von Heijne, G., Steppuhn, J. and Herrmann, R.G. 1989. Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180: 535–545.

    Google Scholar 

  • von Stedingk, E.M., Pavlov, P.F., Grinkevich, V.A. and Glaser, E. 1997. Mitochondrial protein import: modification of sulfhydryl groups of the inner mitochondrial membrane import machinery in Solanum tuberosum inhibits protein import. Plant Mol. Biol. 35: 809–820.

    Google Scholar 

  • Wachter, C., Schatz, G. and Glick, B.S. 1994. Protein import into mitochondria: the requirement for external ATP is precursor-specific whereas intramitochondrial ATP is universally needed for translocation into the matrix. Mol. Biol. Cell 5: 465–474.

    Google Scholar 

  • Waegemann, X. and Soll, J. 1996. Phosphorylation of the transit sequence of chloroplast precursor proteins. J. Biol. Chem. 271: 6545–6554.

    Google Scholar 

  • Wang, X., Dumont, M.E. and Sherman, F. 1996. Sequence requirements for mitochondrial import of yeast cytochrome c. J. Biol. Chem. 271: 6594–6604.

    Google Scholar 

  • Whelan, J., O'Mahony, P. and Harmey, M.A. 1990. Processing of precursor proteins by plant mitochondria. Arch. Biochem. Biophys. 279: 281–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Stedingk, E., Pavlov, P.F., Grinkevich, V.A. et al. The precursor of the F1β subunit of the ATP synthase is covalently modified upon binding to plant mitochondria. Plant Mol Biol 41, 505–515 (1999). https://doi.org/10.1023/A:1006375123496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006375123496

Navigation