Skip to main content
Log in

Material science and engineering: The enabling technology for the commercialisation of fuel cell systems

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The critical role of materials science and engineering in the development of fuel cell technology is surveyed. The inability to fabricate reliable triple-phase-boundary (tbp) structures involving electrolytes, electronic conductors, and gaseous reactants, severely restricted the progress of fuel cells until about four decades ago (∼1960). However at the start of the new millennium, commercialisation of four fuel cell types: polymeric electrolyte membrane (PEMFC), phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC), is now being very energetically pursued. Materials selection for each type of fuel cell is briefly examined, and the predominant engineering issues related to the development of commercial products are summarised. The fabrication, reliability, and cost of the relevant materials is of paramount importance to ensure rapid market penetration. The choice of fuel and relevant infrastructure is also considered, and the crucial role of materials for energy storage (particularly hydrogen) and fuel processing, is emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Grove, Phil. Mag., Ser. 3 14 (1839) 127.

    Google Scholar 

  2. A. M. Adams, F. T. Bacon and R. G. T. W atson, in “Fuel Cells,” edited byW. Mitchell, Jr. (Academic Press, New York, 1963) p. 129.

    Google Scholar 

  3. A. J. Appleby and F. R. Foulkes, “Fuel Cell Handbook” (Van Nostrand Reinhold, New York, 1989).

    Google Scholar 

  4. L. J. N. Blomen and M. N. Mugerwa (eds), “Fuel Cell Systems” (Plenum, New York, 1993).

    Google Scholar 

  5. K. Kordesch and G. Simader, “Fuel Cells and Their Applications” (VCH, Weinheim, Germany, 1996).

    Google Scholar 

  6. R. M. Dell, R. A. Huggins, R. Parsons and B. C. H. Steele (eds), Phil. Trans. Roy. Soc., Ser. A 354 (1996) 1513.

  7. J. Larminie and A. Dicks, “Fuel Cell Systems Explauned” (Wiley, New York, 2000).

    Google Scholar 

  8. K. V. Kordesch, J. Electrochem. Soc. 125 (1978) 77C.

    Google Scholar 

  9. A. J. Appleby, J. Power Sources 29 (1990) 3.

    Google Scholar 

  10. “Fuel Cell Handbook” 4th Ed. (US Dept. of Energy, Morgantown, PA, 1998).

  11. V. I. Grove, J. Power Sources 86 (2000) 1-578.

    Google Scholar 

  12. http://www.cicm.ic.ac.uk (for additional sites).

  13. W. R. Grove, Phil. Mag., Ser. 3 21 (1842) 417.

    Google Scholar 

  14. S. M. Aceves, G. D. Berry and G. D. Rambach, Intl. J. Hydrogen Energy 23 (1998) 583.

    Google Scholar 

  15. C. E. Thomas, I. F. Kuhn, B. D. James and F. D. Lomax Jr., ibid. 23 (1998) 507.

    Google Scholar 

  16. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Dresselhaus, Science 286 (1999) 1127.

    PubMed  Google Scholar 

  17. Mercatox Project, EC Contract JOE3-CT95-002 (Final Report, 1999).

  18. W. Heur, J. Power Sources 86 (2000) 158.

    Google Scholar 

  19. S. G. Chalk, J. F. Miller and F. W. Wagner, ibid. 86 (2000) 40.

    Google Scholar 

  20. P. N. Dyer, R. E. Richards and S. L. Russek, in “SOFC VI” Vol. 99-19, edited by S. C. Singhal and M. Dokiya (Electrochem. Soc., New Jersey, USA, 1999) p. 1173.

    Google Scholar 

  21. F. T. Bacon, Electrochimica Acta 14 (1969) 569.

    Google Scholar 

  22. F. T. Bacon (by K. R. Williams), Biographical Memoirs of Fellows of the Royal Society 39 (1994) 3 (Royal Society, London, UK)

    Google Scholar 

  23. E. Gutzow, J. Power Sources 61 (1996) 99.

    Google Scholar 

  24. K. Kordesch, V. Hacker, J. Gsellman, M. Cifraun, G. Faleschini, P. Enzinger, R. Fankhauser, M. Ortner, M. Muhr and R. A. Aronson, ibid. 86 (2000) 162.

    Google Scholar 

  25. T. Ralph, Platinum Metals Review 41 (1997) 102.

    Google Scholar 

  26. D. S. Cameron, ibid. 43 (1999) 149.

    Google Scholar 

  27. K. B. Prater, J. Power Sources 61 (1996) 105.

    Google Scholar 

  28. F. N. Buchi, B. Gupta, O. Haas and G. G. Scherer, Electrochimica Acta 40 (1995) 345.

    Google Scholar 

  29. K. D. Kreuer, J. Membrane Science, submitted.

  30. P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni and V. Antonucci, Solid State Ionics 125 (1999) 431.

    Google Scholar 

  31. B. D. Mcnicol, D. A. J. Rand and K. R. Williams, J. Power Sources 83 (1999) 15.

    Google Scholar 

  32. X. Ren, P. Zelenay, S. Thomas, J. Davey and S. Gottesfeld, ibid. 86 (2000) 111.

    Google Scholar 

  33. R. Whitaker, ibid. 71 (1998) 71.

    Google Scholar 

  34. M. J. Binder, in Ref. 26.

  35. G. H. J. Broers, Ph.D. thesis, University of Amsterdam, Amsterdam, 1958.

    Google Scholar 

  36. J. R. Selman, Energy 11 (1986) 153.

    Google Scholar 

  37. J. P. P. Huijsmans, G. J. Kraauj. R. C. Markus, G. Rietveld, E. F. Sitters and H. Th. J. Reijers, J. Power Sources 86 (2000) 117.

    Google Scholar 

  38. H.-H. Mobius, J. Solid State Electrochemistry 1 (1997) 2.

    Google Scholar 

  39. N. Q. Minh and T. Takahashi, “Science and Technology of Ceramic Fuel Cells” (Elsevier, Amsterdam, 1995).

    Google Scholar 

  40. H. Yokokawa, Key Engineeering Materials 153/154 (1998) 37.

    Google Scholar 

  41. S. C. Singhal, in “SOFC VI” Vol. 99-19, edited by S. C. Singhal and M. Dokiya (Electrochem. Soc., NewJersey, USA, 1999) p. 39.

    Google Scholar 

  42. R. A. George, J. Power Sources 86 (2000) 134.

    Google Scholar 

  43. P. Micheli, M. Williams and F. Sudhoff, US Patent 5, 541, 014.

  44. H.-E. Vollmer, J. Power Sources 86 (2000) 90.

    Google Scholar 

  45. A. L. Dicks, R. G. Fellows, C. Martin Mescal and C. Seymour, ibid. 86 (2000) 501.

    Google Scholar 

  46. B. C. H. Steele, European Fuel Cell News 7 (2000) 16.

    Google Scholar 

  47. A. A. Atkinson and T. M. G. M. Ramos, Solid State Ionics 129 (2000) 259.

    Google Scholar 

  48. B. C. H. Steele, in Proc 10th IUPAC Conf. on High Temperature Materials Chemistry (Forschungszentrum Julich, Germany in press.

  49. K. Hilpert, D. Das, M. Miller, D. H. Peck and R. Weiss, J. Electrochem. Soc. 143 (1996) 3642.

    Google Scholar 

  50. D. Dulieu, J. Cotton, H. Greiner, K. Honegger, A. Scholten, M. Christie and T. Seguelong, in “3rd European SOFC Forum” edited by P. Stevens (European Fuel Cell Forum, Oberrohdorf, Switzerland CH-5452, 1998) p. 447.

    Google Scholar 

  51. S. C. Singhal and M. Dokiya (eds)., “SOFC VI” Vol. 99-19 (Electrochemical Society, New Jersey, USA, 1999).

    Google Scholar 

  52. A. J. McEvoy, (Ed.), “Proc. 4th European Fuel Cell Forum” (European Fuel Cell Forum, Oberrohdorf, Switzerland CH-5452, 2000).

    Google Scholar 

  53. B. C. H. Steele, Solid State Ionics 129 (2000) 95.

    Google Scholar 

  54. R. Doshi, Von L. Richards, J. D. Carter, X. Wang and M. Krumpelt, J. Electrochem. Soc. 146 (1999) 1273.

    Article  Google Scholar 

  55. B. C. H. Steele, in Proc of European Fuel Cell Group Spring Workshop, Cambridge, 1994, p. 85.

  56. Y. Chen and J. E. Evans, J. Power Sources 58 (1996) 87.

    Google Scholar 

  57. E. P. Murray, T. Tsau and S. A. Bartlett, Nature 400 (1999) 649.

    Google Scholar 

  58. S. Park, R. Craciun, J. M. Vohs and R. Gorte, J. Electrochem. Soc. 146 (1999) 3603.

    Google Scholar 

  59. K. Yamajii, T. Horita, M. Ishikawa, N. Sakau and H. Yokokawa, Solid State Ionics 121 (1999) 217.

    Google Scholar 

  60. M. Martin, Solid State Ionics 136/137 (2000) 331.

    Google Scholar 

  61. H. Arikawa, H. Nishiguchi, T. Ishihara and Y. Takita, Solid State Ionics 136/137 (2000) p31.

    Google Scholar 

  62. P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux and Y. Laligant, Nature 404 (2000) 856.

    PubMed  Google Scholar 

  63. H. G. Bohn and T. Schober, J. Amer. Ceram. Soc. 83 (2000) 768.

    Google Scholar 

  64. T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida and M. Sano, Science 288 (2000) 2031.

    PubMed  Google Scholar 

  65. N. Sakau, K. Yamaji, T. Horita, H. Yokokawa, Y. Hirata, S. Sameshima, Y. Nigara and J. Mizusaki, Solid State Ionics 125 (1999) 325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steele, B.C.H. Material science and engineering: The enabling technology for the commercialisation of fuel cell systems. Journal of Materials Science 36, 1053–1068 (2001). https://doi.org/10.1023/A:1004853019349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004853019349

Keywords

Navigation