Skip to main content
Log in

The effect of copper oxide on sintering, microstructure, mechanical properties and hydrothermal ageing of coated 2.5Y-TZP ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Copper oxide dopants in amounts up to 1 wt% were added to 2.5 mol% yttria-coated zirconia powders in studies of sintering, microstructure, mechanical properties and hydrothermal ageing behaviour. High densities (>6 Mgm−3), high tetragonal phase content (>95%), and phenomenal fracture toughness values (>17 MPam1/2), were obtained for lower dopant levels. Grain sizes of 0.13 to 0.25 μm were measured for all samples sintered at 1300°C. Rounded pores in some doped samples indicated that a liquid phase was involved during sintering. Copper oxide additions aid low temperature sintering and offer potential for property enhancement with a particularly high toughness being measured as well as improving resistance to structural degradation in 180°C hydrothermal ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Masaki and K. Kobayashi, in “Advanced Ceramics,” edited by S. Saito (Oxford Uni. Press, UK, 1988) pp. 210–226.

  2. S. Lawson, C. Gill and G. P. Dransfield, J. Mater. Sci. 30 (1995) 3057–3060.

    Google Scholar 

  3. P. Kountouros and G. Petzow, in “Science and Technology of Zirconia V,” edited by S. P. S. Badwal, M. J. Bannister and R. H. J. Hannink (Technomic, Pub. Co. Inc., 1993) pp. 30–48.

  4. S. Lawson, PhD thesis, University of Sunderland, UK, 1993.

    Google Scholar 

  5. S. Ramesh, C. Gill, S. Lawson and G. P. Dransfield, J. Mater. Sci. 31 (1996) 6055–6062.

    Google Scholar 

  6. S. Lawson, J. Eur. Ceram. Soc. 15 (1995) 485–502.

    Google Scholar 

  7. N. Kimura, S. Abe, Y. Hayashi, J. Morishita and H. Okamura, Sprechsaal 122 (1989) 341–343.

    Google Scholar 

  8. S. Ramesh, PhD thesis, University of Sunderland, England, UK, 1997.

    Google Scholar 

  9. J. R. Seidensticker and M. J. Mayo, Mater. Sci. Forum. 170–172 (1994) 415–420.

    Google Scholar 

  10. L. A. Xue, J. Mater. Sci. Letts. 11 (1992) 1395–1397.

    Google Scholar 

  11. G. P. Dransfield, in “Engineering Ceramics: Fabrication Science and Technology,” Br. Ceram. Proc., Vol. 50, edited by D. P. Thompson (The Institute of Materials, London, 1993) pp. 1–8.

    Google Scholar 

  12. H. Toraya, M. Yoshimura and S. Somiya, J. Amer. Ceram. Soc. 67 (1984) C-183–C-184.

    Google Scholar 

  13. K. Niihara, R. Morena and D. P. H. Hasselman, J. Mater. Sci. Letts. 1 (1982) 13–16.

    Google Scholar 

  14. A. G. Evans and E. A. Charles, J. Amer. Ceram. Soc. 59 (1976) 371–372.

    Google Scholar 

  15. M. I. Mendelson, ibid. 52 (1969) 443–446.

    Google Scholar 

  16. S. Lawson, G. P. Dransfield, A. G. Jones, P. Mc Colgan and W. M. Rainforth, in the 8th CIMTEC World Ceramics Congress, Florence, Italy, 1994.

  17. W. E. Lee and W. M. Rainforth, “Ceramic Microstructures: Property Control by Processing” (Chapman and Hall, London, 1994) pp. 317.

    Google Scholar 

  18. M. L. Mecartney, J. Amer. Ceram. Soc. 70 (1987) 54–58.

    Google Scholar 

  19. M. Gust, G. Gao, J. Wolfenstine and M. L. Mecartney, ibid. 76 (1993) 1681–1690.

    Google Scholar 

  20. D. K. Shetty, I. G. Wright, P. N. Mincer and A. H. Clauer, J. Mater. Sci. 20 (1985) 1873–1882.

    Google Scholar 

  21. G. R. Antis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 64 (1981) 533–538.

    Google Scholar 

  22. M. S. Kaliszewski, G. Behrens, A. H. Heuer, M. C. Shaw, D. B. Marshall, G. W. Dransmann, R. W. Steinbrech, A. Pajares, F. Guiberteau, F. L. Cumbrera and A. Domingues-Rodriguez, ibid. 77 (1994) 1185–1193.

    Google Scholar 

  23. J. R. Seidensticker and M. J. Mayo, ibid. 79 (1996) 401–406.

    Google Scholar 

  24. W. Zhang and K. Osamura, Metall. Trans. 21A (1990) 2243–2248.

    Google Scholar 

  25. A. M. Gadalla and J. White, Trans. Brit. Ceram. Soc. 65 (1966) 383–390.

    Google Scholar 

  26. A. M. Gadalla and P. Kongkachuichay, J. Mater. Res. 6 (1991) 450–454.

    Google Scholar 

  27. M. Hartmanova, F. W. Poulsen, F. Hanic, K. Putyera, D. Tunega, A. A. Urusovskaya and T. V. Oreshnikova, J. Mater. Sci. 29 (1994) 2152–2158.

    Google Scholar 

  28. R. D. Shannon, Acta Cryst. 32A (1976) 751–767.

    Google Scholar 

  29. C.-M. J. Hwang and I-W. Chen, J. Amer. Ceram. Soc. 73 (1990) 1626–1632.

    Google Scholar 

  30. J. R. Seidensticker and M. J. Mayo, Scripta Metallurgica et Materialia 31 (1994) 1749–1754.

    Google Scholar 

  31. S. Ramesh, Unpublished research, University of Sunderland, UK, 1995.

    Google Scholar 

  32. S. Ramesh, C. Gill, S. Lawson and G. P. Dransfield, in the Pacific Rim 2, International Ceramic Conference, Cairns, Australia, 1996, Paper no. 555.

  33. C. Gill, S. Ramesh, C. Y. Tan, S. Lawson and G. P. Dransfield, in the Pacific Rim 2, International Ceramic Conference, Cairns, Australia, 1996, Paper no. 204.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, S., Gill, C. & Lawson, S. The effect of copper oxide on sintering, microstructure, mechanical properties and hydrothermal ageing of coated 2.5Y-TZP ceramics. Journal of Materials Science 34, 5457–5467 (1999). https://doi.org/10.1023/A:1004743924347

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004743924347

Keywords

Navigation