Skip to main content
Log in

Modulation of amino acid metabolism in transformed tobacco plants deficient in Fd-GOGAT

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Tobacco (Nicotiana tabacum) plants expressing a

partial ferredoxin-dependent glutamine-2-oxoglutarate aminotransferase (Fd-GOGAT) cDNA in the antisense orientation under the control of the 35S promoter, were used to study the metabolism of amino acids, 2-oxoglutarate and ammonium following the transition from CO2 enrichment (where photorespiration is inhibited) to air (where photorespiration is a major process of ammonium production in leaves). The leaves of the lowest Fd-GOGAT expressors accumulated more foliar glutamine (Gln) and α-ketoglutarate (α-KG) than the untransformed controls in both growth conditions. Photorespiration-dependent increases in foliar ammonium, glutamine, α-KG and total amino acids were proportional to the decreases in foliar Fd-GOGAT activity. No change in endoprotease activity was observed following transfer to air in the Fd-GOGAT transformants or the untransformed controls which has similar activities over a broad range of pH values. We conclude that several pathways of amino acid biosynthesis are modified when NH3 + and Gln accumulate in leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon D I 1949 Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris L. Plant Physiol. 24, 1–15.

    PubMed  CAS  Google Scholar 

  • Bergmeyer H U 1965 Citrate, malate, ?-ketoglutarate. In Methods of Enzymatic Analysis, Ed. H U Bergmeyer. Weinheim, Germany: Verlag Chemie. pp 318–334. New York and London. Academic Press.

    Google Scholar 

  • Betsche T 1983 Aminotransfer from alanine and glutamate to glycine and serine during photorespiration in oat leaves. Plant Physiol. 71, 961–965.

    PubMed  CAS  Google Scholar 

  • Blackwell R D, Murray A J S and Lea P J 1987 Inhibition of photosynthesis in barley with decreased levels of chloroplastic glutamine synthetase activity. J. Exp. Bot. 38, 1799–1809.

    CAS  Google Scholar 

  • Blackwell R D, Murray A J S, Lea P J and Joy K W 1988 Photorespiratory amino donors, sucrose synthesis and the induction of CO2 fixation in barley deficient in glutamine synthetase and/or glutamate synthase. Plant Mol. Biol. 30, 307–320.

    Google Scholar 

  • Coïc Y and Lesaint C 1975 La nutrition minérale et en eau des plantes en horticulture avancée. Document technique de SCPA, 23, 1–22.

    Google Scholar 

  • Dixon RA, and Palva NL 1995 Stress-induced phenylpropanoid metabolism. Plant Cell 7, 1085–1097.

    Article  PubMed  CAS  Google Scholar 

  • Ferrario-Méry S, Thibaud M-C, Betsche T, Valadier M-H and Foyer C H 1997 Modulation of carbon and nitrogen metabolism, and of nitrate reductase, in untransformed and transformed Nicotiana plumbaginifolia during CO2 enrichment of plants grown in pots and in hydroponic culture. Planta 202, 510–521.

    Article  Google Scholar 

  • Galili G 1995 Regulation of lysine and threonine biosynthesis. Plant Cell 7, 899–906.

    Article  PubMed  CAS  Google Scholar 

  • Guyer D, Patton D and Ward E 1995 Evidence for cross-pathway regulation of metabolic gene expression in plants. Proc. Natl. Acad. Sci. USA 92, 4997–5000.

    Article  PubMed  CAS  Google Scholar 

  • Häusler R E, Blackwell R D, Lea P J and Leegood R C 1994 Control of photosynthesis in barley mutants with reduced activities of glutamine synthetase and glutamate synthase. I. Plant characteristics and changes in nitrate, ammonium and amino acids. Planta 194, 406–417.

    Google Scholar 

  • Häusler R E, Bailey K J, Lea P J and Leegood R C 1996 Control of photosynthesis in barley mutants with reduced activities of glutamine synthetase and glutamate synthase. III. Aspects of glyoxylate metabolism and effects of glyoxylate on the activation state of ribulose-1,5-bisphophate carboxylase-oxygenase. Planta 200, 388–396.

    Article  Google Scholar 

  • Hirel B, Phillipson B, Murchie E, Suzuki A, Kunz C, Ferrario S, Limami A, Chaillou S, Deleens E, Brugière N, Chaumont-Bonnet M, Foyer C and Morot-Gaudry JF 1997 Manipulating the pathway of ammonia assimilation in transgenic non-legumes and legumes. Z. Pflanzenernähr. Bodenkd. 160, 283–290.

    CAS  Google Scholar 

  • Horsch R B, Fry J E, Hoffmann N L, Eichhoitz D, Rogers S G and Frey R T 1985 A simple and general method for transferring genes into plants. Science 227, 1229–1231.

    CAS  Google Scholar 

  • Jefferson R A, Kavanagh T A and Bevan MW 1987 GUS fusions: ?-glucuronidase as asensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  • Joy K W 1988 Ammonia, glutamine and asparagine; a carbon– nitrogen interface. Can. J. Bot. 66, 2103–2109.

    CAS  Google Scholar 

  • Joy K W, Blackwell R D and Lea P J 1992 Assimilation of nitrogen in mutants lacking enzymes of glutamate synthase cycle. J. Exp. Bot. 43, 139–145.

    CAS  Google Scholar 

  • Kendall A C, Wallsgrove RM, Hall N P, Turner J C and Lea P J 1986 Carbon and nitrogen metabolism in barley (Hordeum vulgare L.) mutants lacking ferredoxin-dependent glutamate synthase. Planta 168, 316–323.

    Article  CAS  Google Scholar 

  • Lam H M, Peng S S Y and Coruzzi G M 1994 Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana. Plant Physiol. 106, 1347–1357.

    Article  PubMed  CAS  Google Scholar 

  • Lea P J and Miflin B J 1974 An alternative route for nitrogen assimilation in higher plants. Nature 251, 614–616.

    Article  PubMed  CAS  Google Scholar 

  • Miflin B J 1980 Histidine biosynthesis. In The Biochemistry of Plants. Ed. B J Miflin. Vol. 5, pp 533–539. Amino acids and derivatives. Academic Press, New York.

    Google Scholar 

  • Miflin B J and Lea P J 1980 Ammonia assimilation. In The Biochemistry of Plants. Ed. B J Miflin. Vol. 5, pp 169–202. Academic Press, New York.

    Google Scholar 

  • Morcuende R, Krapp A, Vaughan H and Stitt M 1998 Sucrose feedings leads to increased rates of nitrate assimilation, increased rates of ?-ketogluatrate synthesis of a wide spectrum of amino acids in tobacco leaves. Planta 206, 394–409.

    Article  CAS  Google Scholar 

  • Morris P F, Layzell D B, Canvin D T 1989 Photorespiratory ammonia does not inhibit photosynthesis in glutamate mutants of Arabidopsis. Plant Physiol. 89 498–500.

    Article  PubMed  CAS  Google Scholar 

  • Rosen H 1957 A modified ninhidrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67, 10–15.

    Article  PubMed  CAS  Google Scholar 

  • Rochat C and Boutin J-P 1989 Carbohydrates and nitrogenous compounds changes in the hull and in the seed during the pod development of pea. Plant Physiol. Biochem. 202, 510–521.

    Google Scholar 

  • Scheible W R, Gonzalez-Fontes A, Lauerer M, Müller-Röber B, Caboche Mand Stitt M 1997 Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9, 783–798.

    Article  PubMed  CAS  Google Scholar 

  • Singh B K and Shaner D L 1995 Biosynthesis of branched chain amino acids: from test tube to field. Plant Cell 7, 935–944.

    Article  PubMed  CAS  Google Scholar 

  • Somerville C R and Ogren W L 1980 Inhibition of photosynthesis in Arabidopsis mutans lacking leaf glutamate synthase activity. Nature 286, 257–259.

    Article  CAS  Google Scholar 

  • Suzuki A and Rothstein S 1997 Structure and regulation of ferredoxine-dependent glutamate synthase from Arabidopsis thaliana–Cloning of cDNA, expression in different tissues of wild-type and gltS mutant strains, and light induction. Eur. J. Biochem. 243, 708–718.

    Article  PubMed  CAS  Google Scholar 

  • Szamosi I, Shaner D L and Singh B K 1993 Identification and characterization of a biodegradative form of threonine dehydratase in senescing tomato (Lycopersicon esculentum) leaf. Plant Physiol. 101, 999–1004.

    PubMed  CAS  Google Scholar 

  • Ta T C, Joy K W, Ireland R J. 1985 Role of asparagine in the photorespiratory nitrogen metabolism of pea leaves. Plant Physiol. 78, 334–337.

    PubMed  CAS  Google Scholar 

  • Temple S J, Vance CP and Gantt JS 1998 Glutamate synthase and nitrogen assimilation. Trends Plant Science 3, 51–56.

    Article  Google Scholar 

  • Thompson J F 1980 Arginine synthesis, proline synthesis, and related process. In The Biochemistry of Plants. Ed. B J Miflin. Vol. 5, pp 375–402. Academic Press, New York.

    Google Scholar 

  • Wallsgrove R M, Turner J C, Hall N P, Kendall A C and Bright S W J 1987 Barley mutants lacking chloroplast glutamine synthetase – Biochemical and genetic analysis. Plant Physiol. 83, 155–158.

    PubMed  CAS  Google Scholar 

  • Zhao J, Williams CC and Last RL 1998 Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10, 359–370.

    Article  PubMed  CAS  Google Scholar 

  • Zhu-Shimoni J X and Galili G 1998 Expression of an Arabidopsis aspartate kinase/homoserine dehydratase gene is metabolically regulated by photosynthesis-releated signals but not by nitrogenous compounds. Plant Physiol. 116, 1023–1028.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrario-Méry, S., Suzuki, A., Kunz, C. et al. Modulation of amino acid metabolism in transformed tobacco plants deficient in Fd-GOGAT. Plant and Soil 221, 67–79 (2000). https://doi.org/10.1023/A:1004715208478

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004715208478

Navigation