Skip to main content
Log in

Investigations of Ultrasound Propagation in Porous Impurity-Helium Solids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The velocity and attenuation of ultrasound passing through porous impurity-helium solids immersed in liquid 4He have been measured in the temperature range 1.1–2.3 K. These solids were formed by injecting a mixture of impurity (e.g. D2, Ne, N2 or Kr) and helium gases into superfluid 4He. The sound signal seemed to propagate mainly in the helium contained in the pores, rather than through the solid sample itself. We found that the speed of sound at low temperatures is close to and decreases more rapidly with temperature than first sound in bulk helium, similar to behavior observed in aerogel. The attenuation of sound in helium in the “compressed” impurity-helium solids is bigger than in bulk helium and increases rapidly with temperature up to ∼1.65 K, after which a crossover to a much weaker temperature dependence was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Tabbert, H. Gunter, and G. zu Putlits, J. Low Temp. Phys. 109, 653 (1997).

    Google Scholar 

  2. S. Grebnev, J.P. Toennies, and A.F. Vilesov, Science 279, 2083 (1998).

    Google Scholar 

  3. M. Hartmann, F. Mielke, J.P. Toennies, A.F. Vilesov, and G. Benedek, Phys. Rev. Lett. 76, 4560 (1996).

    Google Scholar 

  4. E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, and V.V. Khmelenko, Cryogenics 9, 555 (1976).

    Google Scholar 

  5. E.B. Gordon, V.V. Khmelenko, E.A. Popov, A.A. Pelmenev, and O.F. Pugachev, Chem. Phys. Lett. 155, 301 (1989).

    Google Scholar 

  6. E.B. Gordon, V.V. Khmelenko, A.A. Pelmenev, E.A. Popov, O.F. Pugachev, and A.F. Shestakov, Chem. Phys. 170, 411 (1993).

    Google Scholar 

  7. R.E. Boltnev, E.B. Gordon, V.V. Khmelenko, I.N. Krushinskaya, M.V. Martynenko, A.A. Pelmenev, E.A. Popov, and A.F. Shestakov, Chem. Phys. 189, 367 (1994).

    Google Scholar 

  8. R.E. Boltnev, E.B. Gordon, V.V. Khmelenko, M.V. Martynenko, A.A. Pelmenev, E.A. Popov, and A.F. Shestakov, J. de Chimie Physique 92, 362 (1995).

    Google Scholar 

  9. R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, D.Yu. Stolyarov, and V.V. Khmelenko, Chem. Phys. Lett. 305, 217 (1999).

    Google Scholar 

  10. V. Kiryukhin, B Keimer, R.E. Boltnev, V.V. Khmelenko, and E.B. Gordon, Phys. Rev. Lett. 79, 1774 (1997).

    Google Scholar 

  11. J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6 (1973).

  12. D.J. Bishop and J.D. Reppy, Phys. Rev. B 22, 5171 (1980).

    Google Scholar 

  13. M.H.W. Chan, K.I. Blum, S.Q. Murphy, G.K.S. Wong, and J.D. Reppy, Phys. Rev. Lett. 61, 1950 (1988).

    Google Scholar 

  14. J. Yoon, D. Sergatskov, J. Ma, N. Mulders, and M.H.W. Chan, Phys. Rev. Lett. 80, 1461 (1998).

    Google Scholar 

  15. K.L. Warnerand and J.R. Beamish, Phys. Rev. B 36, 5698 (1987).

    Google Scholar 

  16. N. Muldersand and J.R Beamish, Phys. Rev. Lett. 62, 438 (1989).

    Google Scholar 

  17. K. Warnerand and J.R. Beamish, Phys. Rev. B 50, 15 896 (1994).

    Google Scholar 

  18. E. Dalfovo, Z. Phys. D 29, 61 (1994).

    Google Scholar 

  19. M.J. McKenna, T. Slawecki, and J.D. Maynard, Phys. Rev. Lett. 66, 1878 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, S.I., Khmelenko, V.V., Geller, D.A. et al. Investigations of Ultrasound Propagation in Porous Impurity-Helium Solids. Journal of Low Temperature Physics 119, 357–366 (2000). https://doi.org/10.1023/A:1004617819633

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004617819633

Keywords

Navigation