Skip to main content
Log in

Empirical evaluation of cytonuclear models incorporating genetic drift and tests for neutrality of mtDNA variants: data from experimental Gambusia hybrid zones

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Statistical tests of genetic drift and of the neutrality of mtDNA are presented using empirical time‐series data on multi‐generational changes in cytonuclear disequilibria within replicated experimental hybrid populations of two species of live‐bearing Poeciliid fishes (Gambusia holbrooki and G.affinis) which were monitored over a period of two years (three generations). Cytonuclear disequilibria D and D (which measure departures from random associations of cytoplasmic and nuclear genotypes) over the three generations of the experiment were non‐zero for all replicate populations. For each of five nuclear loci, the observed measures of D and D were highly concordant between replicates during each generation. Significant departures from expectations were observed after one and two generations. A statistical measure of goodness of fit of observed changes in cytonuclear disequilibria (and implicitly of the neutrality of the mtDNA markers) was calculated for each nuclear locus. When the results for the replicates were combined into an overall test of neutrality, the fit to the random union of zygotes (RUZ) model was rejected for four of the five nuclear loci (P < 0.05). A simple genetic drift model does not explain the temporal changes in composite cytonuclear genotypic frequencies. Frequencies of parental G. holbrooki mitochondrial alleles and nuclear genotypes exceeded expected values during most time periods, implying some selective advantage of offspring produced by G. holbrooki females. Expansion of cytonuclear models to explicitly address questions of genetic drift and neutrality have general relevance to studies of natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, J., 1993. Cytonuclear disequilibria in hybrid zones. Ann. Rev. Ecol. Syst. 24: 521–554.

    Article  Google Scholar 

  • Arnold, J., M.A. Asmussen & J.C. Avise, 1989. An epistatic mating system model can produce permanent cytonuclear disequilibria in a hybrid zone. Proc. Natl. Acad. Sci. USA 85: 1893–1896.

    Article  Google Scholar 

  • Asmussen, M.A. & J. Arnold, 1991, The effects of admixture and population subdivision on cytonuclear disequilibrium. Theor. Pop. Biol. 39: 273–300.

    Article  CAS  Google Scholar 

  • Asmussen, M.A., J. Arnold & J.C. Avise, 1987. Definition and properties of disequilibrium statistics for associations between nuclear and cytoplasmic genotypes. Genetics 115: 755–768.

    PubMed  CAS  Google Scholar 

  • Asmussen, M.A., J. Arnold & J.C. Avise, 1989. The effects of assortative mating and migration on cytonuclear associations in hybrid zones. Genetics 122: 923–934.

    PubMed  CAS  Google Scholar 

  • Ballard, J.W. & M. Kreitman, 1994. Unraveling selection in the mitochondrial genome of Drosopila. Genetics 138: 757–772.

    PubMed  CAS  Google Scholar 

  • Ballard, J.W. & M. Kreitman, 1995. Is mitochondrial DNA a strictly neutral marker? Trends Ecol. Syst. 10: 485–488.

    Article  Google Scholar 

  • Clark, A.G. & E.M.S. Lyckegaard, 1988. Natural selection with nuclear and cytoplamic transmission III: Joint analysis of segregation and mtDNA in Drosophila melanogaster. Genetics 118: 471–481.

    PubMed  CAS  Google Scholar 

  • Crow, J.F. & M. Kimura, 1970. An Introduction to Population Genetics Theory. Harper and Row, New York.

    Google Scholar 

  • Datta, S. & J. Arnold, 1996. Diagnostics and a statistical test of neutrality hypotheses using the dynamics of cytonuclear disequilibria. Biometrics 52: 1042–1054.

    Article  Google Scholar 

  • Datta, S., Y.X. Fu & J. Arnold, 1996. Dynamics and equilibrium behavior of cytonuclear disequilibriua under genetic drift, mutation, and migration. Theor. Pop. Biol. 50: 298–324.

    Article  CAS  Google Scholar 

  • DiRienzo, A. & A.C. Wilson, 1991. Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc. Natl. Acad. Sci. USA 88: 1597–1601.

    Article  CAS  Google Scholar 

  • Excoffier, L., 1990. Evolution of human mitochondrial DNA: Evidence for departure from a pure neutral model of populations at equilibrium. J. Mol. Evol. 30: 125–139.

    Article  PubMed  CAS  Google Scholar 

  • Gyllensten, U. & A.C. Wilson, 1987. Interspecific mitochondrial DNA transfer and the colonization of Scandanavia by mice. Genet. Res. 49: 25–29.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, R.R., M. Kreitman & M. Aquada, 1987. A test of neutral molecular evolution based on nucleotide data. Genetics 116: 153–159.

    PubMed  CAS  Google Scholar 

  • Hudson, R.R., M. Kreitman & W.P. Maddison, 1992. Estimation of levels of gene flow based on nucleotide data. Genetics 132: 583–589.

    PubMed  CAS  Google Scholar 

  • Hutter, C.M. & D.M. Rand, 1995. Competition between mitochondrial DNA haplotypes in distinct nuclear genetic environments: Drosophila pseudoobscura vs and D. persimilis. Genetics 140: 537–548.

    PubMed  CAS  Google Scholar 

  • Fu, Y.X., 1996. New statistical tests of neutrality for DNA samples from a populations. Genetics 143: 557–570.

    PubMed  CAS  Google Scholar 

  • Fu, Y.X. & J. Arnold, 1992. Dynamics of cytonuclear disequilibria in finite populations and comparison with a two-locus nuclear system. Theor. Pop. Biol. 41: 1–25.

    Article  CAS  Google Scholar 

  • Fu, Y.X. & W.H. Li, 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709.

    PubMed  CAS  Google Scholar 

  • Kallman, K.D. & M.P. Schreibman, 1973. A sex-linked gene determining the age of sexual maturation and size of the platyfish Xiphophorus maculatus. Genet. Comp. Endocrin. 21: 287–304.

    Article  CAS  Google Scholar 

  • Kilpatrick, S.T. & D.M. Rand, 1995. Conditional hitchhiking of mitochondrial DNA: Frequency shifts of Drosophila melanogaster mtDNA variants depend on nuclear genetic background. Genetics 141: 1113–1124.

    PubMed  CAS  Google Scholar 

  • Lamb, T. & J.C. Avise, 1986. Directional introgression of mitochondrial DNA in a hybrid population of tree frogs: the influence of mating behavior. Proc. Natl. Acad. Sci. USA 83: 2526–2530.

    Article  PubMed  Google Scholar 

  • MacRae, A.F. & W.W. Anderson, 1988. Evidence for non-neutrality of mitochondrial DNA haplotypes in Drosophila pseudoobscura. Genetics 120: 485–494.

    PubMed  CAS  Google Scholar 

  • McDonald, J.H. & M. Kreitman, 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, M.W., S.N. Boyer & C.F. Aquadro. 1994. Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 gene in mice. Proc. Natl. Acad. Sci. USA 91: 6364–6368.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, M.W., W.M. Brown, M. Stoneking & C.F. Aquadro, 1996. Nonneutral mitochondrial DNA variation in humans and chimpanzees. Genetics 142: 953–963.

    PubMed  CAS  Google Scholar 

  • Rand, D.M., M. Dorfsman & L.M. Kann, 1994. Neutral and nonneutral evolution of Drosophila mitochondrial DNA. Genetics 138: 741–756.

    PubMed  CAS  Google Scholar 

  • Scribner, K.T., 1993. Hybrid zone dynamics are influenced by genotype-specific variation in life-history traits: Experimental evidence from hybridizing Gambusia species. Evolution 47: 632–646.

    Article  Google Scholar 

  • Scribner, K.T. & J.C. Avise, 1993a. Demographic and life history characteristics influence the cytonuclear composition of mosquitofish populations, pp. 280–290 in Genetics and Evolution of Aquatic Organisms, edited by A. Beaumont. Chapman and Hall, New York.

    Google Scholar 

  • Scribner, K.T. & J.C. Avise, 1993b. Cytonuclear genetic architecture in mosquitofish populations and the possible roles of introgressive hybridization. Mol. Ecol. 2: 139–149.

    Google Scholar 

  • Scribner, K.T. & J.C. Avise, 1994a. Population cage experiments with a vertebrate: The temporal demography and cytonuclear genetics of hybridization in Gambusia fishes. Evolution 48: 155–171.

    Article  Google Scholar 

  • Scribner, K.T. & J.C. Avise, 1994b. Cytonuclear genetics of experimental fish hybrid zones inside Biosphere II. Proc. Natl. Acad. Sci. USA 91: 5066–5069.

    Article  PubMed  CAS  Google Scholar 

  • Tajima, F., 1989. Statistical method of testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.

    PubMed  CAS  Google Scholar 

  • Watterson, G.A., 1970. The effect of linkage in finite randommating populations. Theor. Pop. Biol. 1: 72–87.

    Article  CAS  Google Scholar 

  • Wooten, M.C. & C. Lydeard, 1990. Allozyme variation in a natural contact zone between Gambusia affinis and Gambusia holbrooki. Biochem. Systematics Ecol. 18: 168–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scribner, K.T., Datta, S., Arnold, J. et al. Empirical evaluation of cytonuclear models incorporating genetic drift and tests for neutrality of mtDNA variants: data from experimental Gambusia hybrid zones. Genetica 105, 101–108 (1999). https://doi.org/10.1023/A:1003656610365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003656610365

Navigation