Skip to main content
Log in

Eternal Inflation, Black Holes, and the Future of Civilizations

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We discuss the large-scale structure of the universe in inflationary cosmologyand the implications that it may have for the long-term future of civilizations.Although each civilization is doomed to perish, it may be possible to transmitits accumulated knowledge to future civilizations. We consider several scenariosof this sort. If the cosmological constant is positive, it eventually dominates theuniverse and bubbles of inflationary phase begin to nucleate at a constant rate.Thermalized regions inside these inflating bubbles will give rise to new galaxiesand civilizations. It is possible in principle to send a message to one of them. Itmight even be possible to send a device whose purpose is to recreate anapproximation of the original civilization in the new region. However, the messageor device will almost certainly be intercepted by black holes, which nucleate ata much higher rate than inflating bubbles. Formation of new inflating regionscan also be triggered by gravitational collapse, but again the probability is low,and the number of attempts required for a positive outcome is enormous. Theprobability can be higher if the energy scale of inflation is closer to the Planckscale, but a high energy scale produces a tight bound on the amount of informationthat can be transmitted. One can try to avoid quantum tunneling altogether, butthis requires a violation of quantum inequalities which constrain the magnitudeof negative energy densities. However, the limits of validity of quantuminequalities are not clear, and future research may show that the required violationis in fact possible. Therein lies the hope for the future of civilizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. D. Linde, Particle Physics and Inflationary Cosmology (Harwood Academic, Chur, Switzerland, 1990).

    Google Scholar 

  2. A, Vilenkin, Phys. Rev. D 27, 2848 (1983).

    Google Scholar 

  3. A. D. Linde, Phys. Lett. B 175, 395 (1986).

    Google Scholar 

  4. A. A. Starobinsky, In Lecture Notes in Physics, Vol. 246 (Springer, Heidelberg, 1986).

    Google Scholar 

  5. V. Vanchurin, A. Vilenkin, and S. Winitzki, gr-qc/9905097.

  6. J. Garriga and V. F. Mukhanov, Phys. Lett. B, appear, hep-th/9904176. 1900 Garriga et al.

  7. F. J. Dyson, Rev. Mod. Phys. 51, 447 (1979).

    Google Scholar 

  8. L. M Krauss and G. D. Starkman, astro-ph/9902189, CWRU-P1-99.

  9. S. Perlmutter et al., Ap. J. 483, 56 (1997); S. Perlmutter et al., astro-ph/9812473 (1998); B. Schmidt et al., Ap. J. 507, 46 (1998); A. J. Riess et. al., Ap. J. 116, 1009 (1998).

    Google Scholar 

  10. J. Garriga and A. Vilenkin, Phys. Rev. D 57, 2230 (1998).

    Google Scholar 

  11. K. Lee and E. J. Weinberg, Phys. Rev. D 36, 1088 (1987).

    Google Scholar 

  12. E. Farhi, A. H. Guth, and J. Guven, Nucl. Phys. B 339, 417 (1990).

    Google Scholar 

  13. G. 't Hooft, In Salam Festschrift: A Collection of Talks, A. Ali, J. Ellis, and R Randjbar-Daemi (World Scientific, Singapore, 1993); L. Susskind, J. Math. Phys. 36, 6377 (1995).

    Google Scholar 

  14. J. Bekenstein, Phys. Rev. D 9, 3292 (1974); S. W. Hawking, Phys. Rev. D 14, 2460 (1976).

    Google Scholar 

  15. H. Nariai, Sci. Rep. Tohoku Univ. Ser. I 35, 62 (1951).

    Google Scholar 

  16. E. Farhi and A. H. Guth, Phys. Lett. 183B, 149 (1987).

    Google Scholar 

  17. L. H. Ford and T. A. Roman, Phys. Rev. D 55, 2082 (1997).

    Google Scholar 

  18. A. D. Linde, Nucl. Phys. B 372, 421 (1992).

    Google Scholar 

  19. D. Solomon, Negative energy density for a Dirac¶Maxwell field, gr-qc/9907060.

  20. H. B. G. Casimir, Proc. K. Ned. Akad. Wet. B 51, 793 (1948); but see A. D. Helfer and A. S. Lang, J. Phys. A 32, 1937 (1999).

    Google Scholar 

  21. V. P. Frolov, M. A. Markov, and V. F. Mukhanov, Phys. Lett. B 216, 272 (1989); Phys. Rev. D 41, 383 (1990).

    Google Scholar 

  22. M. Visser, Lorentzian Wormholes from Einstein to Hawking (AIP Press, New York, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garriga, J., Mukhanov, V.F., Olum, K.D. et al. Eternal Inflation, Black Holes, and the Future of Civilizations. International Journal of Theoretical Physics 39, 1887–1900 (2000). https://doi.org/10.1023/A:1003602000709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003602000709

Keywords

Navigation