Skip to main content
Log in

UNIVERSALITY OF THE LAGRANGIAN VELOCITY STRUCTURE FUNCTION CONSTANT (C0) ACROSS DIFFERENT KINDS OF TURBULENCE

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In this paper, we evaluate the Lagrangian velocity structure function constant, C0, in the inertial subrange by comparing experimental diffusion data and simulation results obtained with applicable Lagrangian stochastic models. We find in several different flows (grid turbulence, laboratory boundary-layer flow and the atmospheric surface layer under neutral stratification) the value for C0 is 3.0 ± 0.5. We also identify the reasons responsible for earlier studies having not reached the present result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand, M. S. and Pope, S. B.: 1985, 'Diffusion Behind a Line Source in Grid Turbulence', in F. Durst et al. (eds.), Turbulent Shear Flows 4, Springer Verlag, Berlin, pp. 46–61.

    Google Scholar 

  • Barad, M. L.: 1958, Project Prairie Grass: A Field Program in Diffusion, Geophysical Research Papers No. 59 (II) TR-58-235 (II), Air Force Cambridge Research Centre, U.S.A.

    Google Scholar 

  • Borgas, M. S. and Sawford, B.L.:1994, 'Stochastic Equations with Multifractal Random Increments for Modelling Turbulent Dispersion', Phys. Fluids 6, 618–633.

    Google Scholar 

  • Csanady, G. T.: 1973, Turbulent Diffusion in the Environment, D. Reidel Publishing Company.

  • Davis, P. A.: 1983, 'Markov Chain Simulations of Vertical Dispersion from Elevated Sources into the Neutral Planetary Boundary Layer', Boundary-Layer Meteorol. 7, 199–226.

    Google Scholar 

  • Du, S.: 1996, 'The Effects of Higher Eulerian Velocity Moments on the Mean Concentration Distribution', Boundary-Layer Meteorol., in press.

  • Du, S., Sawford, B. L., Wilson, J. D., and Wilson, D. J.: 1995, 'Estimation of the Kolmogorov Constant (C 0) for the Lagrangian Structure Function, Using a Second-order Lagrangian Model of Grid Turbulence', Phys. Fluids 7, 3083–3090.

    Google Scholar 

  • Du, S., Wilson, J. D., and Yee, E.: 1994, 'Probability Density Function for Velocity in the Convective Boundary Layer and Implied Trajectory Models', Atmos. Environ. 28, 1211–1217.

    Google Scholar 

  • Lamb, R. G.: 1982, 'Diffusion in the Convective Boundary Layer', in F. T. M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Modelling, D. Reidel Publishing Company, pp. 159–229.

  • Legg, B. J.: 1983, 'Turbulent Dispersion from an Elevated Line Source: Markov Chain Simulations of Concentration and Flux Profiles', Quart. J. Roy. Meteorol. Soc. 109, 645–660.

    Google Scholar 

  • Ley, A. J.: 1982, 'A Random Walk Simulation of Two-dimensional Turbulent Diffusion in the Neutral Surface Layer', Atmos. Environ. 16, 2799–2808.

    Google Scholar 

  • Pope, S. B.: 1987, 'Consistency Conditions for Random-walk Models of Turbulent Dispersion', Phys. Fluids 30, 2374–2379.

    Google Scholar 

  • Pope, S. B.: 1994, 'Lagrangian pdf Methods for Turbulent Flows', Ann. Rev. Fluid Mech. 26, 23–63.

    Google Scholar 

  • Raupach, M. R. and Legg, B. J.: 1983, 'Turbulent Dispersion from an Elevated Line Source: Measurement of Wind-concentration Moments and Budgets', J. Fluid Mech. 136, 111–137.

    Google Scholar 

  • Reid, J. D.:1979, 'Markov Chain Simulations of Vertical Dispersion in the Neutral Surface Boundary Layer', Boundary-Layer Meteorol. 16, 3–22.

    Google Scholar 

  • Sawford, B. L.: 1985, 'Lagrangian Stochastic Simulation of Concentration Mean and Fluctuation Fields', J. Appl. Meteorol. 24, 1152–1166.

    Google Scholar 

  • Sawford, B. L.: 1991, 'Reynolds Number Effects in Lagrangian Stochastic Models of Turbulent Dispersion', Phys. Fluids A3, 1577–1586.

    Google Scholar 

  • Sawford, B. L. and Guest, F.M.: 1988, 'Uniqueness and Universality of Lagrangian Stochastic Models of Turbulent Dispersion', 8th Symposium on Turbulence and Diffusion, American Meteorol. Soc. 96–99.

  • Thomson, D. J.: 1987, 'Criteria for the Selection of Stochastic Models of Particle Trajectories in Turbulent Flows', J. Fluid Mech. 180, 529–556

    Google Scholar 

  • Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, 315 pp.

    Google Scholar 

  • Wilson, J. D. and Flesch, T. K.: 1993, 'Flow Boundaries in Random-flight Dispersion Models: Enforcing the Well-mixed Condition', J. Appl. Meteorol. 32, 1695–1707.

    Google Scholar 

  • Wilson, J. D., Thurtell, G. W., and Kidd, G. E.: 1981, ‘Numerical Simulation of Particle Trajectories in Inhomogeneous Turbulence, III: Comparison of Predictions with Experimental Data for the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 21, 443–463.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DU, S. UNIVERSALITY OF THE LAGRANGIAN VELOCITY STRUCTURE FUNCTION CONSTANT (C0) ACROSS DIFFERENT KINDS OF TURBULENCE. Boundary-Layer Meteorology 83, 207–219 (1997). https://doi.org/10.1023/A:1000216809160

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000216809160

Navigation