Skip to main content
Log in

Biaxially Oriented Polypropylene (BOPP) Surface Modification by Nitrogen Atmospheric Pressure Glow Discharge (APGD) and by Air Corona

  • Published:
Plasmas and Polymers

Abstract

We compare two surface treatments of biaxially-oriented polypropylene (BOPP), which are carried out in the same dielectric barrier discharge (DBD) apparatus, namely air corona, and N2 atmospheric pressure glow discharge (APGD). Changes in the surface energy and chemistry are investigated by contact angle measurements, by X-ray photoelectron spectroscopy (XPS) and by attenuated total reflectance infrared spectroscopy (ATR-FTIR). It is shown that N2 APGD treatment leads to a higher surface energy than air corona treatment, and to the formation of mostly amine, amide, and hydroxyl functional groups at the polypropylene surface. Finally, hydrophobic recovery of the treated film is studied; for both treatment types, the increased surface energy is found to decay in a similar manner with increasing storage time after treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. L. Mittal and A. Pizzi, eds., Adhesion Promotion Techniques, Marcel Dekker Inc., New York (1999).

    Google Scholar 

  2. M. Strobel, C. Dunatov, J. M. Strobel, C. S. Lyons, S. J. Perron, and M. C. Morgen, J. Adhesion Sci. Technol. 3, 321 (1989).

    Google Scholar 

  3. R. Bartnikas, Brit. J. Appl. Phys. 1, 659 (1968).

    Google Scholar 

  4. R. Bartnikas, IEEE Trans. Electr. Insul. EI6, 63 (1971).

    Google Scholar 

  5. S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D: Appl. Phys. 21, 838 (1988).

    Google Scholar 

  6. N. Gherardi, E. Gat, G. Gouda, and F. Massines, Proc.Hakone VI, ” Cork, 123 (1998).

  7. F. Massines, A. Rabehi, P. Decomps, R. Ben Gadri, P. Ségur, and C. Mayoux, J. Appl. Phys. 83, 2950 (1998).

    Google Scholar 

  8. F. Massines and G. Gouda, J. Phys. D: Appl. Phys. 31, 3411 (1998).

    Google Scholar 

  9. E. Monette, M.Sc. A. Thesis, Ecole Polytechnique, Montreal (1998).

  10. E. Monette, R. Bartnikas, G. Czeremuszkin, M. Latrèche, and M. R. Wertheimer, Proc. 14th Int. Symp. on Plasma Chem. (ISPC 14), Prague, p. 991 (1999).

  11. S. F. Miralaï, E. Monette, R. Bartnikas, G. Czeremuszkin, M. Latrèche, and M. R. Wertheimer, Plasmas and Polymers 5, 63 (2000).

    Google Scholar 

  12. N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, Plasma Sources Sci. Technol. 9, 340 (2000).

    Google Scholar 

  13. F. Massines, R. Messaoudi, and C. Mayoux, Plasmas and Polymers 3, 43 (1998).

    Google Scholar 

  14. G. Gouda, Ph.D. Thesis, Université Paul Sabatier, Toulouse (1999).

  15. F. Massines, G. Gouda, N. Gherardi, M. Duran, and E. Croquesel, Plasmas and Polymers 6, 105 (2001).

    Google Scholar 

  16. J. M. Strobel, M. Strobel, C. S. Lyons, C. Dunatov, and S. J. Perron, J. Adhesion Sci. Technol. 5, 119 (1991).

    Google Scholar 

  17. D. H. Kaelble, Physical Chemistry of Adhesion, John Wiley, New York (1971).

    Google Scholar 

  18. M. Strobel, N. Sullivan, M. C. Branch, V. Jones, J. Park, M. Ulsh, J. M. Strobel, and C. S. Lyons, J. Adhesion Sci. Technol. 15, 1 (2001).

    Google Scholar 

  19. J. E. Klemberg-Sapieha, O. M. Küttel, L. Martinu, and M. R. Wertheimer, J. Vac. Sci. Technol. A9, 2975 (1991).

    Google Scholar 

  20. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA 300 Database, John Wiley, Chichester (1992).

    Google Scholar 

  21. L. J. Gerenser, Surface chemistry of plasma-treated polymers, Handbook of Thin Film Process Technology, D. A. Glocker and S. I. Shah, eds., IOP Publishing, Bristol (1996).

    Google Scholar 

  22. R. D. Boyd, A. M. Kenwright, D. Briggs, and J. P. S. Badyal, Macromolecules 30, 5429 (1997).

    Google Scholar 

  23. C. Y. Kim and D. A. I. Goring, J. Appl. Polym. Sci. 15, 1357, 1971.

    Google Scholar 

  24. N. Foulon-Belkacemi, M. Goldman, and A. Goldman, Proc. 11th Int. Symp. on Plasma Chem. (ISPC 11), Loughborough, United Kingdom, p. 1210 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guimond, S., Radu, I., Czeremuszkin, G. et al. Biaxially Oriented Polypropylene (BOPP) Surface Modification by Nitrogen Atmospheric Pressure Glow Discharge (APGD) and by Air Corona. Plasmas and Polymers 7, 71–88 (2002). https://doi.org/10.1023/A:1015274118642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015274118642

Navigation