Skip to main content
Log in

Optimal Sampling Times for Bayesian Estimation of the Pharmacokinetic Parameters of Nortriptyline During Therapeutic Drug Monitoring

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Sampling times for Bayesian estimation of the pharmacokinetic parameters of an antidepressant drug, nortriptyline, during its therapeutic drug monitoring were optimized. Our attention was focused on designs including a limited number of measurements: one, two, and three sample designs in which sampling times had to be chosen between 0 and 24 hr after the last intake of a test-dose study. The optimization was conducted in four groups of patients defined by their gender and the administration or not of concomitant drugs inhibiting the metabolism of nortriptyline. The Bayesian design criterion was defined as the expected information provided by an experiment. A stochastic approximation algorithm, the Kiefer–Wolfowitz algorithm, was used for the criterion maximization under experimental constraints. Results showed that optimal Bayesian sampling times differ between patients in monotherapy and polytherapy. For one-sample designs the measurements have to be performed either at the lower (0 hr) or at the upper (24 hr) bound of the admissible interval. Replications were often found for 2- and 3-point designs. Other sampling designs can lead to criterion close to the optimum and can therefore be performed without great loss of information. In contrast, we found that several designs lead to low values of the information criterion, which justifies the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. L. Steimer, M. E. Ebelin, and J. Van Bree. Pharmacokinetic and pharmacodynamic data and models in clinical trials. Eur. J. Drug. Metab. Pharmacokin. 18:61–76 (1993).

    Article  CAS  Google Scholar 

  2. L. Yuh, S. Beal, M. Davidian, F. Harrisson, A. Hester, K. Kowalski, E. Vonesh, and R. Wolfinger. Population pharmacokinetics/pharmacodynamics methodology and applications: A bibliography. Biometrics 50:566–575 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. M. Davidian and D. M. Giltininan. Non Linear Models for Repeated Measurement Data, Chapman and Hall, London, 1995.

    Google Scholar 

  4. K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statist. Sci. 10:273–304 (1995).

    Article  Google Scholar 

  5. D. V. Lindley. On the measure of information provided by an experiment. Ann. Math. Statist. 27:986–1005 (1956).

    Article  Google Scholar 

  6. C. E. Shannon. A mathematical theory of communication. Bell System Tech. J. 27:379–423 (1948).

    Article  Google Scholar 

  7. M. H. DeGroot. Uncertainty, information and sequential experiment. Ann. Math. Stat. 33:404–419 (1962).

    Article  Google Scholar 

  8. J. M. Bernardo. Expected information as expected utility. Ann. Statist. 7:686–690 (1979).

    Article  Google Scholar 

  9. N. G. Polson. On the expected amount of information from a non-linear model. J. Roy. Statist. Soc. B54:889–895 (1992).

    Google Scholar 

  10. D. Z. D'Argenio. Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math. Biosci. 99:105–118 (1990).

    Article  PubMed  Google Scholar 

  11. M. Tod and J. M. Rocchisani. Implementation of OSPOP, an algorithm for the estimation of optimal sampling times in pharmacokinetics by the ED, EID and API criteria. Comput. Meth. Prog. Biomed. 50:13–22 (1996).

    Article  CAS  Google Scholar 

  12. P. Mueller and G. Parmigiani. Numerical evaluation of information theoretic measure. Technical report 93A05, Duke University, Durham, NC, 1993.

    Google Scholar 

  13. P. Mueller and G. Parmigiani. Optimal design via curve fitting of Monte Carlo experiments. J. Am. Statist. Assoc. 90:1322–1333 (1995).

    Google Scholar 

  14. Y. Merlé and F. Mentré. Bayesian design criteria: computation, comparison and application to a pharmacokinetic and a pharmacodynamic model. J. Pharmacokin. Biopharm. 23:101–124 (1995).

    Article  Google Scholar 

  15. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23:462–466 (1952).

    Article  Google Scholar 

  16. Y. Merlé and F. Mentré. Stochastic optimization algorithms of a Bayesian design criterion for Bayesian parameter estimation of nonlinear regression models. Application in pharmacokinetics. Math. Biosci. 144:45–70 (1997).

    Article  PubMed  Google Scholar 

  17. M. Jerling, Y. Merlé, F. Mentré, and A. Mallet. Population pharmacokinetics of nortriptyline at monotherapy and during concomitant treatment with drugs that inhibit CYP2D6—an evaluation with the nonparametric maximum likelihood method. Br. J. Clin. Pharmacol. 38:453–462 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. M. Asberg, B. Cronholm, F. Sjoqvist, and D. Tuck. Relationship between plasma level and therapeutic effect of nortriptyline. Br. Med. J. 3:331–334 (1971).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. L. Bertilsson, M. Eichelbaum, B. Mellstrom, J. Sawe, H. U. Schultz, and F. Sjoqvist. Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sci. 27:1673–1677 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. M. L. Dahl and L. Bertilsson. Genetically variable metabolism of antidepressants and neuroleptic drugs in man. Pharmacogenetics 3:61–70 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. E. Steiner, L. Bertilsson, J. Sawe, I. Bertling, and F. Sjoqvist. Polymorphic debrisoquin hydroxylation in 757 swedish subjects. Clin. Pharmacol. Ther. 51:12–17 (1992).

    Article  Google Scholar 

  22. M. L. Dahl, L. Bertilsson, and C. Nordin. Steady-state plasma levels of nortriptyline and its 10-hydroxymetabolite: Relationship to the CYP2D6 genotype. Psychopharmacologica 123:315–319 (1996).

    Article  CAS  Google Scholar 

  23. B. Miljkovic, M. Pokrajac, I. Timotijevic, and V. Varagic. Clinical response and plasma concentrations of amitriptyline and its metabolite nortriptyline in depressive patients. Eur. J. Drug. Metab. Pharmacokin. 21:251–255 (1996).

    Article  CAS  Google Scholar 

  24. N. M. K. Ying Kin, N. Klitgaard, N. P. V. Nair, M. Amin, P. Kragh-Sorensen, G. Schwartz, S. K. Ahmed, P. Holm, C. Katona, and K. Stage. Clinical relevance of serum nortriptyline and 10-hydroxy-nortriptyline in the depressed elderly: A pharmacokinetic and pharmacodynamic study. Neuropsychopharmacology 15:1–6 (1996).

    Article  Google Scholar 

  25. A. Mallet. Maximum likelihood estimation method for random coefficient regression models. Biometrika 73:645–656 (1986).

    Article  Google Scholar 

  26. L. Pronzato and L. E. Walter. Robust experiment design via stochastic approximation. Math. Biosci. 75:103–120 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merlé, Y., Mentré, F. Optimal Sampling Times for Bayesian Estimation of the Pharmacokinetic Parameters of Nortriptyline During Therapeutic Drug Monitoring. J Pharmacokinet Pharmacodyn 27, 85–101 (1999). https://doi.org/10.1023/A:1020634813296

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020634813296

Navigation