Skip to main content
Log in

Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Using the examples of cadmium and lead, the review considers the various toxic effects exerted by these heavy metals. Putative specific and nonspecific mechanisms of the toxic effects of the heavy metals and plant responses are discussed together with the issue of Cd and Pb accumulation in various plant organelles, cells, tissues, and organs. The basic mechanisms providing for plant resistance to excess Cd and Pb are elucidated. These data are used to schematically outline the changes in plant metabolism produced by these heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sanita di Toppi, L. and Gabbrielli, R., Response to Cadmium in Higher Plants, Environ. Exp. Bot., 1999, vol. 41, pp. 105-130.

    Google Scholar 

  2. Baker, A.J.M., Metal Tolerance, New Phytol., 1987, vol. 106, pp. 93-111.

    Google Scholar 

  3. Antosiewicz, D.M., Adaptation of Plants to an Environment Polluted with Heavy Metals, Acta. Soc. Bot. Polon., 1992, vol. 61, pp. 281-299.

    Google Scholar 

  4. Salt, D.E., Blaylock, M., Kumar, N.P.B.A., Dushenkov, V., Ensley, B.D., Chet, I., and Raskin, I., Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants, Biotechnology, 1995, vol. 13, pp. 468-474.

    Google Scholar 

  5. Alekseeva-Popova, N.V., Toxic Effect of Lead on Higher Plants, Ustoichivost' k tyazhelym metallam dikorastushchikh vidov (Tolerance of Plant Species Grown in the Wild to Heavy Metals), Alekseeva-Popova, N.V., Ed., Leningrad: Lenuprizdat, 1991, pp. 92-100.

    Google Scholar 

  6. Bingham, F.T., Metal Ions in Biological Systems, Concepts on Metal Ion Toxicity, Singel, H. and Singel, A., Eds., New York: Marcel Dekker, 1986. Translated under the title Nekotorye voprosy toksichnosti ionov metallov, Moscow: Mir, 1993.

    Google Scholar 

  7. Ernst, W.H.O., Effects of Heavy Metals in Plants at the Cellular and Organismic Level, Ecotoxicology. Ecological Fundamentals, Chemical Exposure and Biological Effects, Schuurmann, G. and Markert, B., Eds., Heidelberg: Wiley and Sons, 1999, pp. 587-620.

    Google Scholar 

  8. Morel, J.L., Mench, M., and Guckert, A., Measurement of Pb, Cu and Cd Binding with Mucilage Exudates from Maize (Zea mays L.) Roots, Biol. Fertil. Soils, 1986, vol. 2, pp. 29-34.

    Google Scholar 

  9. Cutler, J.M. and Rains, D.M., Characterization of Cadmium Uptake by Plant Tissue, Plant Physiol., 1974, vol. 54, pp. 67-71.

    Google Scholar 

  10. Cataldo, D.A. and Wildung, R.C., Soil and Plant Factors Influencing the Accumulation of Heavy Metals by Plants, Environ. Health. Perspect., 1978, vol. 27, pp. 149-159.

    Google Scholar 

  11. Griling, C.A. and Peterson, P.J., The Significance of the Cadmium Species in Uptake and Metabolism of Cadmium in Crop Plants, J. Plant Nutr., 1981, vol. 3, pp. 703-720.

    Google Scholar 

  12. Dushenkov, V., Kumar, N., Motto, H., and Raskin, I., Rizofiltration: The Use of Plants to Remove Heavy Metals from Aqueous Streams, Environ. Sci. Technol., 1995, vol. 29, pp. 1239-1245.

    Google Scholar 

  13. Hagemeyer, J., Kahle, H., Breckle, S.-W., and Waisel, Y., Cadmium in Fagus sylvatica L. Trees and Seedlings: Leaching, Uptake and Interconnection with Transpiration, Water, Air, Soil Pollut., 1986, vol. 29, pp. 347-359.

    Google Scholar 

  14. Hinesly, T.D., Alexander, D.E., Redborg, K.E., and Liegler, E.L., Differential Accumulation of Cd and Zn by Corn Hybrids Grown on Soil Amended with Sewage Sludge, Agron. J., 1982, vol. 74, pp. 469-474.

    Google Scholar 

  15. Godzik, B., Heavy Metals Content in Plants from Zinc Dumps and Reference Areas, Polish Bot. Stud., 1993, vol. 5, pp. 113-132.

    Google Scholar 

  16. Preer, J.R., Abdi, A.N., Sekhon, H.S., and Murchison, G.B., Metals in Urban Gardens—Effect of Lime and Sludge, J. Environ. Sci. Health, 1995, vol. 30, pp. 2041-2056.

    Google Scholar 

  17. Hardiman, R.T. and Jacoby, B., Absorption and Translocation of Cd in Bush Beans (Paseolus vulgaris), Physiol. Plant., 1984, vol. 61, pp. 670-674.

    Google Scholar 

  18. Jarvis, S.C., Jones, L.H.P., and Hopper, M.J., Cadmium Uptake from Solution by Plants and Its Transport from Roots to Shoots, Plant Soil, 1976, vol. 44, pp. 179-191.

    Google Scholar 

  19. Kawasaki, T. and Moritsugu, M., Effect of Calcium on the Absorption and Translocation of Heavy Metals in Excised Barley Roots: Multi-Compartment Transport Box Experiment, Plant Soil, 1987, vol. 100, pp. 21-34.

    Google Scholar 

  20. Jensen, G.M., Interactions of Cd and Ca in Roots of Willow and Birch at Different Ca Status, Plant Root—from Cells to Systems. 14th Long-Ashton Int. Symp., Bristol, 1995, p. 70.

  21. Gussarsson, M., Adalsteinsson, S., Jensen, P., and Asp, P., Cadmium and Copper Interactions on the Accumulation and Distribution of Cd and Cu in Birch (Betula pendula Roth.) Seedlings, Plant Soil, 1995, vol. 171, pp. 185-187.

    Google Scholar 

  22. Choudhary, M., Bailey, L.D., Grant, C.A., and Leisle, D., Effect of Zn on the Concentration of Cd and Zn in Plant Tissue of 2 Durum Wheat Lines, Can. J. Plant Sci., 1995, vol. 75, pp. 445-448.

    Google Scholar 

  23. Simon, L., Martin, H.W., and Adriano, D.C., Chicory (Cichorium intybus) and Dandelion (Taraxacum officinale Web.) as Phytoindicators of Cadmium Contamination, Water, Air, Soil Pollut., 1996, vol. 91, pp. 351-362.

    Google Scholar 

  24. Guo, Y.L. and Marschner, H., Genotypic Differences in Uptake and Translocation of Cadmium in Bean and Maize Inbred Lines, Z. Pflanzenernaehr. Bodenkd., 1996, vol. 159, pp. 55-60.

    Google Scholar 

  25. Kumar, P.B.A.N., Dushenkov, V., Motto, H., and Raskin, I., Phytoextraction: The Use of Plants to Remove Heavy Metals from Soils, Environ. Sci. Technol., 1995, vol. 29, pp. 1232-1238.

    Google Scholar 

  26. Coughtrey, P.J. and Martin, M.H., Cadmium Uptake and Distribution in Tolerant and Non-Tolerant Population of Holcus lanatus Grown in Solution Culture, Oicos, 1978, vol. 30, pp. 555-560.

    Google Scholar 

  27. Khan, D.H., Duckett, J.G., Frankland, B., and Kirkham, J.B., An X-Ray Microanalytical Study of the Distribution of Cadmium in Roots of Zea mays L., Plant. Physiol., 1984, vol. 115, pp. 19-28.

    Google Scholar 

  28. Leblova, S., Mucha, A., and Spirhanzlova, E., Compartmentation of Cadmium, Copper, Lead and Zinc in Seedlings of Maize (Zea mays) Induction of Metallothionein, Biologia (Bratisl.), 1986, vol. 41, pp. 777-785.

    Google Scholar 

  29. Kozarenko, A.E., Lead in Plants, Svinets v okruzhayushchei srede (Lead in Environement), Dobrovol'skii, V.V., Ed., Moscow: Nauka, 1987, pp. 71-76.

    Google Scholar 

  30. Il'in, V.B., Tyazhelye metally v sisteme pochva-rastenie (Heavy Metals in the Soil-Plant System), Novosibirsk: Nauka, 1991.

    Google Scholar 

  31. Zheljazkov, V.D. and Nielsen, N.E., Effect of Heavy Metals on Peppermint and Cornmint, Plant Soil, 1996, vol. 178, pp. 12-20.

    Google Scholar 

  32. Salt, D.E., Prince, R.C., Pickering, I.J., and Raskin, I., Mechanisms of Cadmium Mobility and Accumulation in Indian Mustard, Plant Physiol., 1995, vol. 109, pp. 1427-1433.

    Google Scholar 

  33. Lane, S.D. and Martin, E.S., An Ultrastructural Examination of Lead Localization in Germinating Seeds of Raphanus sativus, Z. Pflanzenphysiol., 1982, vol. 107, pp. 33-40.

    Google Scholar 

  34. Obroucheva, N.V., Bystrova, E.I., Ivanov, V.B., Antipova, O.V., and Seregin, I.V., Root Growth Responses to Lead in Young Maize Seedlings, Plant Soil, 1998, vol. 200, pp. 55-61.

    Google Scholar 

  35. Glater, R.A. and Hernandez, L., Lead Detection in Living Plant Tissue Using a New Histochemical Method, J. Air Pollut. Control Associat., 1972, vol. 22, pp. 463-467.

    Google Scholar 

  36. Wierzbicka, M., Lead Translocation and Localization in Allium cepa Roots, Can. J. Bot., 1987, vol. 65, pp. 1851-1860.

    Google Scholar 

  37. Wierzbicka, M., Lead Accumulation and Its Translocation Barriers in Roots of Allium cepa L. Autoradiographic and Ultrastructural Studies, Plant Cell Environ., 1987, vol. 10, pp. 17-26.

    Google Scholar 

  38. Ksiazek, M. and Wozny, A., Lead Movement in Poplar Adventitious Roots, Biol. Plant., 1990, vol. 32, pp. 54-57.

    Google Scholar 

  39. Theiss, H.-B., Localization of Lead in Seedlings of Lepidium sativum, Sci. Tech. Inform., 1990, vol. 9, pp. 246-252.

    Google Scholar 

  40. Tung, G. and Temple, P.J., Uptake and Localization of Lead in Corn (Zea mays L.) Seedlings, a Study by Histochemical and Electron Microscopy, Sci. Total Environ., 1996, vol. 188, pp. 71-85.

    Google Scholar 

  41. Kocjan, G., Samardakiewicz, S., and Wozny, A., Regions of Lead Uptake in Lemna minor Plants and Localization of This Metal within Selected Parts of the Root, Biol. Plant., 1996, vol. 38, pp. 107-117.

    Google Scholar 

  42. Gzyl, J., Przymusinski, R., and Wozny, A., Organospecific Reactions of Yellow Lupin Seedlings to Lead, Acta Soc. Bot. Polon., 1997, vol. 66, pp. 61-66.

    Google Scholar 

  43. Seregin, I.V. and Ivanov, V.B., Histochemical Investigation of Cadmium and Lead Distribution in Plants, Fiziol. Rast. (Moscow), 1997, vol. 44, pp. 915-921 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  44. Vodnik, D., Jentschke, G., Fritz, E., Gogala, N., and Godbold, D.L., Root-Applied Cytokinin Reduces Lead Uptake and Affects Its Distribution in Norway Spruce Seedlings, Physiol. Plant., 1999, vol. 106, pp. 75-81.

    Google Scholar 

  45. Lane, S.D. and Martin, E.S., A Histochemical Investigation of Lead Uptake in Raphanus sativus, New Phytol., 1977, vol. 79, pp. 281-286.

    Google Scholar 

  46. Schreiber, L., Hartmann, K., Skrabs, M., and Zeier, J., Apoplastic Barriers in Roots: Chemical Composition of Endodermal and Hypodermal Cell Walls, J. Exp. Bot., 1999, vol. 50, pp. 1267-1280.

    Google Scholar 

  47. Crowdy, S.H. and Tanton, T.W., Water Pathways in Higher Plants, J. Exp. Bot., 1970, vol. 21, pp. 102-111.

    Google Scholar 

  48. Chardonnens, A.N., Bookum, W.M., Kuijper, L.D.J., Verkleij, J.A.C., and Ernst, W.H.O., Distribution of Cadmium in Leaves of Cadmium Tolerant and Sensitive Ecotypes of Silene vulgaris, Physiol. Plant., 1998, vol. 104, pp. 75-80.

    Google Scholar 

  49. Seregin, I.V. and Ivanov, V.B., Is the Endodermal Barrier the Only Factor Preventing the Inhibition of Root Branching to Heavy Metal Salts? Fiziol. Rast. (Moscow), 1997, vol. 44, pp. 922-925 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  50. Seregin, I.V. and Ivanov, V.B., The Transport of Cadmium and Lead Ions through Root Tissues, Fiziol. Rast. (Moscow), 1998, vol. 45, pp. 899-905 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  51. Petit, C.M. and van de Geijn, S.C., In vivo Measurement of Cadmium (115mCd) Transport and Accumulation in the Stems of Intact Tomato Plants (Lycopersicon esculentum Mill.), Planta, 1978, vol. 138, pp. 137-143.

    Google Scholar 

  52. Cataldo, D.A., McFadden, K.M., Garland, T.R., and Wildung, R.E., Organic Constituents and Complexation of Nickel(II), Iron(III), Cadmium(II) and Plutonium(IV) in Soybean Xylem Exudates, Plant Physiol., 1988, vol. 86, pp. 734-739.

    Google Scholar 

  53. Senden, M.H.M.N., Vandermeer, A.J.G.M., Verburg, T.G., and Wolterbeek, H.T., Citric Acid in Tomato Plant Roots and Its Effect on Cadmium Uptake and Distribution, Plant Soil, 1995, vol. 171, pp. 333-339.

    Google Scholar 

  54. Leita, L., Denobili, M., Cesco, S., and Mondini, C., Analysis of Intercellular Cadmium Forms in Roots and Leaves of Bush Bean, J. Plant Nutr., 1996, vol. 19, pp. 527-533.

    Google Scholar 

  55. Vassil, A.D., Kapulnik, Y., Raskin, I., and Salt, D.E., The Role of EDTA in Lead Transport and Accumulation by Indian Mustard, Plant Physiol., 1998, vol. 117, pp. 447-453.

    Google Scholar 

  56. Glavac, V., Koenies, H., and Ebben, U., Seasonal Variation and Axial Distribution of Cadmium Concentrations in Trunk Xylem Sap of Beech Trees (Fagus sylvatica L.), Angew. Bot., 1990, vol. 64, pp. 357-364.

    Google Scholar 

  57. Popelka, J.C., Shubert, S., Schulz, R., and Hansen, A.P., Cadmium Uptake and Translocation during Reproductive Development of Peanut (Arachis hypogaea L.), Angew. Bot., 1996, vol. 70, pp. 140-143.

    Google Scholar 

  58. Yang, X., Baligar, V.C., Martens, D.C., and Clark, R.B., Influx, Transport and Accumulation of Cadmium in Plant Species Grown at Different Cd2+ Activities, J. Environ. Sci. Health, 1995, vol. 30, pp. 569-583.

    Google Scholar 

  59. Rauser, W.E. and Ackerley, C.A., Localization of Cadmium in Granules within Differentiating and Mature Root Cells, Can. J. Bot., 1987, vol. 65, pp. 643-646.

    Google Scholar 

  60. Skaar, H., Ophus, E., and Gullvag, B.M., Lead Accumulation within Nuclei of Moss Leaf Cells, Nature, 1973, vol. 241, pp. 215-216.

    Google Scholar 

  61. Ophus, E.M. and Gullvag, B.M., Localization of Lead within Leaf Cell of Rhytidiadelphus squarosus (Hedw.) Warnst. by Means of Transmission Electron Microscopy and X-ray Microanalysis, Cytobios, 1974, vol. 10, pp. 45-48.

    Google Scholar 

  62. Wierzbicka, M., Ultrastructural Location of Lead in the Cell Walls of Allium cepa L. Roots, Postepy Biologii Komorki, 1984, vol. II, pp. 509-512.

    Google Scholar 

  63. Malone, C., Koeppe, D.E., and Miller, J., Localization of Lead Accumulated by Corn Plants, Plant Physiol., 1974, vol. 53, pp. 388-394.

    Google Scholar 

  64. Wierzbicka, M. and Antosiewicz, D., How Lead Can Easily Enter the Food Chain—a Study of Plant Roots, Sci. Total Environ., Suppl., 1993, pp. 423-429.

  65. Wozny, A., Zatorska, B., and Mlodzianowski, F., Influence of Lead on the Development of Lupin Seedlings and Ultrastructural Localization of This Metal in the Roots, Acta Soc. Bot. Polon., 1982, vol. 51, pp. 345-351.

    Google Scholar 

  66. Rudakova, E.V., Karakis, K.D., and Sidorshina, E.I., The Role of Plant Cell Walls in the Uptake and Accumulation of Metal Ions, Fiziol. Biokhim. Kul't. Rast., 1988, vol. 20, pp. 3-12.

    Google Scholar 

  67. Ernst, W.H.O., Verkleij, J.A.C., and Schat, H., Metal Tolerance in Plants, Acta Bot. Neerl., 1992, vol. 43, pp. 229-248.

    Google Scholar 

  68. Blinda, A., Koch, B., Ramanjulu, S., and Deitz, K.-J., De novo Synthesis and Accumulation of Apoplastic Proteins in Leaves of Heavy Metal-Exposed Barley Seedlings, Plant Cell Environ., 1997, vol. 20, pp. 969-981.

    Google Scholar 

  69. Samardakiewicz, S., Strawinski, P., and Wozny, A., The Influence of Lead on Callose Formation in Roots of Lemna minor L., Biol. Plant., 1996, vol. 38, pp. 463-467.

    Google Scholar 

  70. Qureshi, J.A., Hardwick, K., and Collin, H.A., Intracellular Localization of Lead in a Lead Tolerant and Sensitive Clone of Anthoxanthum odoratum, J. Plant. Physiol., 1986, vol. 122, pp. 357-364.

    Google Scholar 

  71. Poulter, A., Collin, H.A., Thurman, D.A., and Hardwick, K., The Role of the Cell Wall in the Mechanism of Lead and Zinc Tolerance in Anthoxanthum odoratum L., Plant Sci., 1985, vol. 42, pp. 61-66.

    Google Scholar 

  72. Nishizono, H., Ichikawa, H., Suziki, S., and Ishii, F., The Role of the Root Cell Wall in the Heavy Metal Tolerance of Athyrium yokoscense, Plant Soil, 1987, vol. 101, pp. 15-20.

    Google Scholar 

  73. Krotz, R.M., Evangelou, B.P., and Wagner, G.J., Relationships between Cadmium, Zinc, Cd-Peptide and Organic Acids in Tobacco Suspension Cells, Plant Physiol., 1989, vol. 91, pp. 780-787.

    Google Scholar 

  74. Mazen, A.M.A. and El Maghraby, O.M.O., Accumulation of Cadmium and Strontium, and a Role of Calcium Oxalate in Water Hyacinth Tolerance, Biol. Plant., 1997/98, vol. 40, pp. 411-417.

    Google Scholar 

  75. Gamalei, Yu.V., The Origin and Location of Plant Organelles, Fiziol. Rast. (Moscow), 1997, vol. 44, pp. 115-137 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  76. Vogeli-Lange, R. and Wagner, G.J., Subcellular Localization of Cadmium and Cadmium-Binding Peptides in Tobacco Leaves, Plant Physiol., 1990, vol. 92, pp. 1086-1093.

    Google Scholar 

  77. Vogeli-Lange, R. and Wagner, G.J., Relationship between Cadmium, Glutathione and Cadmium-Binding Peptides (Phytochelatins) in Leaves of Intact Tobacco Seedlings, Plant Sci., 1996, vol. 114, pp. 11-18.

    Google Scholar 

  78. Salt, D.E. and Rauser, W.E., Mg-ATP-Dependent Transport of Phytochelatins across the Tonoplast of Oat Roots, Plant Physiol., 1995, vol. 107, pp. 1293-1301.

    Google Scholar 

  79. De Knecht, J.A., van Dillen, M., Koevoets, P.L.M., Schat, H., Verkleij, J.A.C., and Ernst, W.H.O., Phytochelatins in Cadmium Sensitive and Cadmium-Tolerant Silene vulgaris, Plant Physiol., 1994, vol. 104, pp. 255-261.

    Google Scholar 

  80. Bazzaz, F.A., Rolfe, G.L., and Windle, P., Effect of Cd on Photosynthesis and Transpiration of Excised Leaves of Corn and Sunflower, J. Environ. Qual., 1974, vol. 3, pp. 156-157.

    Google Scholar 

  81. Prassad, D.D.K. and Prassad, A.R.K., Altered δ-Aminolaevulinic Acid Metabolism by Lead and Mercury in Germinating Seedlings of Bajra (Pennisetum typhoideum), J. Plant Physiol., 1987, vol. 127, pp. 241-249.

    Google Scholar 

  82. Stobart, A.K., Griffiths, W.T., Ameen-Bukhari, I., and Sherwood, R.P., The Effect of Cd2+ on Biosynthesis of Chlorophyll in Leaves of Barley, Physiol. Plant., 1985, vol. 63, pp. 293-298.

    Google Scholar 

  83. Baszinsky, T., Wajda, L., Krol, M., Wolinska, D., Krupa, Z., and Tukendorf, A., Photosynthetic Activities of Cadmium-Treated Tomato Plants, Physiol. Plant., 1980, vol. 48, pp. 365-370.

    Google Scholar 

  84. Stiborova, M., Doubravova, M., Brezinova, A., and Friedrich, A., Effect of Heavy Metal Ions on Growth and Biochemical Characteristics of Photosynthesis of Barley (Hordeum vulgare L.), Photosynthetica, 1986, vol. 20, pp. 418-425.

    Google Scholar 

  85. Stiborova, M., Cd2+ Ions Affect the Quaternary Structure of Ribulose-1,5-bisPhosphate Carboxylase from Barley Leaves, Biochem. Physiol. Pflanz., 1988, vol. 183, pp. 371-378.

    Google Scholar 

  86. Sheoran, I.S., Singal, H.R., and Singh, R., Effect of Cadmium and Nickel on Photosynthesis and the Enzymes of the Photosynthetic Carbon Reduction Cycle in Pigeonpea (Cajanus cajan L.), Photosynth. Res., 1990, vol. 23, pp. 345-351.

    Google Scholar 

  87. Iglesias, A.A. and Andreo, C.S., Inhibition of Zea mays Phosphoenolpyruvate Carboxylase by Copper and Cadmium Ions, Photosynthetica, 1984, vol. 18, pp. 134-138.

    Google Scholar 

  88. Vojtechova, M. and Leblova, S., Uptake of Lead and Cadmium by Maize Seedlings and the Effect of Heavy Metals on the Activity of Phosphoenolpyruvate Carboxylase Isolated from Maize, Biol. Plant., 1991, vol. 33, pp. 386-394.

    Google Scholar 

  89. Weigel, H.J., The Effect of Cd2+ on Photosynthetic Reactions of Mesophyll Protoplasts, Physiol. Plant., 1985, vol. 63, pp. 192-200.

    Google Scholar 

  90. Huang, C.-Y., Bazzaz, F.A., and Vanderhoef, L.N., The Inhibition of Soybean Metabolism by Cadmium and Lead, Plant. Physiol., 1974, vol. 54, pp. 122-124.

    Google Scholar 

  91. Sela, M., Garty, J., and Tel-Or, E., The Accumulation and the Effect of Heavy Metals on the Water Fern Azolla filiculoides, New Phytol., 1989, vol. 112, pp. 7-12.

    Google Scholar 

  92. Burzynski, M. and Grabowski, A., Influence of Lead on NO 3 Uptake and Reduction in Cucumber Seedlings, Acta Soc. Bot. Polon., 1984, vol. 53, pp. 77-86.

    Google Scholar 

  93. Hernandez, L.E., Carpenaruiz, R., and Garate, A., Alterations in the Mineral Nutrition of Pea Seedlings Exposed to Cadmium, J. Plant Nutr., 1996, vol. 19, pp. 1581-1598.

    Google Scholar 

  94. Hernandez, L.E., Garate, A., and Carpenaruiz, R., Effects of Cadmium on the Uptake, Distribution and Assimilation of Nitrate in Pisum sativum, Plant Soil, 1997, vol. 189, pp. 97-106.

    Google Scholar 

  95. Ouariti, O., Gouia, H., and Ghorbal, M.H., Responses of Bean and Tomato Plants to Cadmium-Growth, Mineral Nutrition, and Nitrate Reduction, Plant Physiol. Biochem., 1997, vol. 35, pp. 347-354.

    Google Scholar 

  96. Tu Shu-I and Brouillette, J.N., Metal Ion Inhibition of Corn Root Plasma Membrane ATPase, Phytochemistry, 1987, vol. 26, pp. 65-69.

    Google Scholar 

  97. Fodor, E., Szabonagy, A., and Erdei, L., The Effect of Cadmium on the Fluidity and H+-ATPase Activity of Plasma Membrane from Sunflower and Wheat Roots, J. Plant Physiol., 1995, vol. 147, pp. 87-92.

    Google Scholar 

  98. Chugh, L.K. and Sawhney, S.K., Effect of Cadmium on Activities of Some Enzymes of Glycolysis and Pentose Phosphate Pathway in Pea, Biol. Plant., 1999, vol. 42, pp. 401-407.

    Google Scholar 

  99. Van Assche, F. and Clijsters, H., Effects of Metals on Enzyme Activity in Plants, Plant Cell Environ., 1990, vol. 13, pp. 195-206.

    Google Scholar 

  100. Igoshina, T.I. and Kositsin, A.V., The Tolerance to Lead of Carbonic Anhydrase from Melica nutans (Poaceae), Bot. Zh. (Leningrad), 1990, vol. 75, pp. 1144-1150.

    Google Scholar 

  101. Cardinaels, C., Put, C., Van Assche, F., and Clijsters, H., The Superoxidedismutase as a Biochemical Indicator Discriminating between Zinc and Cadmium Toxicity, Arch. Int. Physiol. Biochem., 1984, vol. 92, pp. 27-28.

    Google Scholar 

  102. Przymusinski, R., Rucinska, R., and Gwozdz, E.A., The Stress Stimulated 16 kDa Polypeptide from Lupin Roots Has Properties of Cytosolic Cu: Zn-Superoxidedismutase, Environ. Exp. Bot., 1995, vol. 35, pp. 485-495.

    Google Scholar 

  103. Srivastava, A. and Jaiswal, V.S., Biochemical Changes in Duck Weed after Cadmium Treatment, Water, Air, Soil Pollut., 1990, vol. 50, pp. 163-170.

    Google Scholar 

  104. Chen, S.L. and Kao, C.H., Cd Induced Changes in Proline Level and Peroxidase Activity in Roots of Rice Seedlings, Plant Growth Regul., 1995, vol. 17, pp. 67-71.

    Google Scholar 

  105. Blinda, A., Abou-Mandour, A., Azarkovich, M., Brune, A., and Dietz, K.-J., Heavy Metal-Induced Changes in Peroxidase Activity in Leaves, Roots and Cell Suspension Cultures of Hordeum vulgare L., Plant Peroxidases: Biochemistry and Physiology, Obinger, C. et al., Eds., Geneva: Univ. Geneva, 1996, pp. 374-379.

    Google Scholar 

  106. Hoxha, Y., Jablanovic, M., Abdullai, K., and Filipovic, R., Catalase Activity in Plants Exposed to Contamination with Heavy Metal, Acta Biol. Med. Exp., 1985, vol. 10, pp. 21-24.

    Google Scholar 

  107. Kositsin, A.V., Interaction between Metals and Enzymes, Ustoichivost' k tyazhelym metallam dikorastushchikh vidov (Tolerance of Plant Species Grown in the Wild to Heavy Metals), Alekseeva-Popova, N.V., Ed., Leningrad: Lenuprizdat, 1991, pp. 15-22.

    Google Scholar 

  108. Shekhovtsova, T.N., Kucheyarova, V.V., and Dolmanova, I.F., The Enzymatic Method of Lead Determination Using Alkaline Phosphatase, Zh. Anal. Khim., 1985, vol. XL, pp. 1810-1814.

    Google Scholar 

  109. Levina, E.N., Obshchaya toksikologiya metallov (General Toxicology of Metals), Leningrad: Meditsyna, 1972.

    Google Scholar 

  110. Stroinski, A., Some Physiological and Biochemical Aspects of Plant Resistance to Cadmium Effect. I. Antioxidative System, Acta Physiol. Plant., 1999, vol. 21, pp. 175-188.

    Google Scholar 

  111. Shaw, B.P., Effects of Mercury and Cadmium on the Activities of Antioxidative Enzymes in the Seedlings of Phaseolus aureus, Biol. Plant., 1995, vol. 37, pp. 587-596.

    Google Scholar 

  112. Obata, H., Inoue, N., and Umebayashi, M., Effect of Cd on Plasma Membrane ATPase from Plant Roots Differing in Tolerance to Cd, Soil Sci. Plant Nutr., 1996, vol. 42, pp. 361-366.

    Google Scholar 

  113. Shekhovtsova, T.N., Muginova, S.V., Mizgunova, U.M., and Dolmanova, I.F., Application of Oxidases in Analysis, Quimica Analitica, 1996, vol. 15, pp. 312-320.

    Google Scholar 

  114. Chaney, R.L., White, M.C., and Van Tierhoven, M., Interaction of Cd and Zn in Phytotoxicity to and Uptake by Soybean, Agron. Abstr., 1976, vol. 68, p. 21.

    Google Scholar 

  115. Lepp, N.W., Interactions between Cadmium and Other Heavy Metals in Affecting the Growth of Lettuce (Lactuca sativa L.) Seedlings, Z. Pflanzenphysiol., 1977, vol. 84, pp. 363-367.

    Google Scholar 

  116. Burzynski, M., The Influence of Lead and Cadmium on the Absorption and Distribution of Potassium, Calcium, Magnesium and Iron in Cucumber Seedlings, Acta Physiol. Plant., 1987, vol. 9, pp. 229-238.

    Google Scholar 

  117. Breckle, S.W., Growth under Stress: Heavy Metals, Plant Roots: The Hidden Half, Waisel, Y. and Kafkafi, U., Eds., New York: Marcel Dekker, 1991, pp. 351-373.

    Google Scholar 

  118. Yang, X., Baligar, V.C., Martens, D.C., and Clark, R.B., Cadmium Effects on Influx and Transport of Mineral Nutrients in Plant Species, J. Plant Nutr., 1996, vol. 19, pp. 643-656.

    Google Scholar 

  119. Obata, H. and Umebayashi, M., Effects of Cadmium on Mineral Nutrient Concentrations in Plants Differing in Tolerance for Cadmium, J. Plant Nutr., 1997, vol. 20, pp. 97-105.

    Google Scholar 

  120. Keck, R.W., Cadmium Alteration of Root Physiology and Potassium Ion Fluxes, Plant Physiol., 1978, vol. 62, pp. 94-96.

    Google Scholar 

  121. Alcantara, E., Romera, F.J., and Canete, M., Effects of Heavy Metals on Both Induction and Function of Root Fe(III) Reductase in Fe Deficient Cucumber (Cucumis sativus) Plants, J. Exp. Bot., 1994, vol. 45, pp. 1893-1898.

    Google Scholar 

  122. Meharg, A.A., The Role of Plasmalemma in Metal Tolerance in Angiosperms, Physiol. Plant., 1993, vol. 88, pp. 191-198.

    Google Scholar 

  123. Ouariti, O., Boussama, N., Zarrouk, M., Cherif, A., and Ghorbal, M.H., Cadmium-and Copper-Induced Changes in Tomato Membrane Lipids, Phytochemistry, 1997, vol. 45, pp. 1343-1350.

    Google Scholar 

  124. Ahrend, R., Kahle, H., and Breckle, S.-W., Effect of Cadmium on Transpiration of Young Beech Trees (Fagus sylvatica L.), Air Pollution and Forest Decline, Bucher, J.B. et al., Eds., Birmensdorf, 1989, pp. 381-383.

  125. Barcelo, J. and Poschenrieder, C., Plant Water Relations as Affected by Heavy Metal Stress: A Review, J. Plant Nutr., 1990, vol. 13, pp. 1-37.

    Google Scholar 

  126. Wozny, A., Schneider, J., and Gwozdz, E.A., The Effects of Lead and Kinetin on Greening Barley Leaves, Biol. Plant., 1995, vol. 37, pp. 541-552.

    Google Scholar 

  127. Vassilev, A., Yordanov, I., and Tsonev, T., Effects of Cd2+ on the Physiological State and Photosynthetic Activity of Young Barley Plants, Photosynthetica, 1997, vol. 34, pp. 293-302.

    Google Scholar 

  128. Barcelo, J., Vazques, M.D., and Poschenrieder, Ch., Structural and Ultrastructural Disorders in Cadmium-Treated Bush Bean Plants (Phaseolus vulgaris L.), New Phytol., 1988, vol. 108, pp. 37-49.

    Google Scholar 

  129. Lane, S.D., Martin, E.S., and Garrod, J.P., Lead Toxicity Effect on Indole-3-Acetic Acid-Induced Cell Elongation, Planta, 1978, vol. 144, pp. 79-84.

    Google Scholar 

  130. Burzynski, M. and Jacob, M., Influence of Lead on Auxin-Induced Cell Elongation, Acta Soc. Bot. Polon., 1983, vol. 52, pp. 231-239.

    Google Scholar 

  131. Barcelo, J., Poschenrieder, Ch., Andreu, I., and Gunse, B., Cadmium Induced Decrease of Water Stress Resistance in Bush Bean Plants (Paseolus vulgaris cv. Contender), J. Plant. Physiol., 1986, vol. 125, pp. 17-25.

    Google Scholar 

  132. Costa, G., Michaut, J.-C., and Morel, J.-L., Influence of Cadmium on Water Relations and Gas Exchanges in Phosphorus Deficient Lupinus albus, Plant Physiol. Biochem., 1994, vol. 32, pp. 105-114.

    Google Scholar 

  133. Leita, L., Marchiol, L., Martin, M., and Petessotti, A., Transpiration Dynamics in Cadmium Treated Soybean (Glycine max L.) Plants, J. Agr. Crop. Sci. Z. Acker. Pflanzen, 1995, vol. 175, pp. 153-156.

    Google Scholar 

  134. Hollenbach, B., Schreiber, L., Hartung, W., and Dietz, K.-J., Cadmium Leads to Stimulated Expression of the Lipid Transfer Protein Genes in Barley: Implications for the Involvement of Lipid Transfer Proteins in Wax Assembly, Planta, 1997, vol. 203, pp. 9-19.

    Google Scholar 

  135. Schat, H., Sharma, S.S., and Vooijs, R., Heavy Metal-Induced Accumulation of Free Proline in a Metal-Tolerant and a Non-Tolerant Ecotype of Silene vulgaris, Physiol. Plant., 1997, vol. 107, pp. 477-482.

    Google Scholar 

  136. Kuznetsov, V.V. and Shevyakova, N.I., Proline under Stress: Biological Role, Metabolism, and Regulation, Fiziol. Rast. (Moscow), 1999, vol. 46, pp. 321-336 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  137. Reese, R.N. and Roberts, L.M., Effect of Cadmium on Whole Cell and Mitochondrial Respiration in Tobacco Cell Suspension Cultures (Nicotiana tabacum L. var. Xanthi), J. Plant. Physiol., 1985, vol. 120, pp. 123-130.

    Google Scholar 

  138. Miller, R.J., Bittell, J.E., and Koeppe, D.E., The Effect of Cadmium on Electron and Energy Transfer Reactions in Corn Mitochondria, Physiol. Plant., 1973, vol. 28, pp. 166-171.

    Google Scholar 

  139. Alia Saradhi, P.P., Suppression in Mitochondrial Electron Transport Is the Prime Cause behind Stress Induced Proline Accumulation, Biochem. Biophys. Res. Commun., 1993, vol. 193, pp. 54-58.

    Google Scholar 

  140. Kesseler, A. and Brand, M.D., Quantitative Determination of the Regulation of Oxidative Phosphorylation by Cadmium in Potato Tuber Mitochondria, Eur. J. Biochem., 1994, vol. 225, pp. 923-935.

    Google Scholar 

  141. Mathys, W., Enzymes of Heavy-Metal-Resistant and Non-Resistant Populations of Silene cucubalus and Their Interaction with Some Heavy Metals in vitro and in vivo, Physiol. Plant., 1975, vol. 33, pp. 161-165.

    Google Scholar 

  142. Malik, D., Sheoran, I.S., and Singh, R., Lipid Composition of Thylakoid Membranes of Cadmium Treated Wheat Seedlings, Indian J. Biochem. Biophys., 1992, vol. 29, pp. 350-354.

    Google Scholar 

  143. Stefanov, K.L., Pandev, S.D., Seizova, K.A., Tyankova, L.A., and Popov, S.S., Effect of Lead on the Lipid Metabolism in Spinach Leaves and Thylakoid Membranes, Biol. Plant., 1995, vol. 37, pp. 251-256.

    Google Scholar 

  144. Kacabova, P. and Nart, L., Effect of Lead on Growth Characteristics and Chlorophyll Content in Barley Seedlings, Photosynthetica, 1986, vol. 20, pp. 411-417.

    Google Scholar 

  145. Krupa, Z. and Baszynski, T., Some Aspects of Heavy Metals Toxicity towards Photosynthetic Apparatus-Direct and Indirect Effects on Light and Dark Reactions, Acta Physiol. Plant., 1995, vol. 17, pp. 177-190.

    Google Scholar 

  146. Wilkins, D.A., The Measurement of Tolerance to Edaphic Factors by Means of Root Growth, New Phytol., 1978, vol. 86, pp. 623-633.

    Google Scholar 

  147. Wang, W., Root Elongation Method for Toxicity Testing of Organic and Inorganic Pollutants, Environ. Toxicol. Chem., 1987, vol. 6, pp. 409-414.

    Google Scholar 

  148. Hagemeyer, J. and Breckle, S.W., Growth under Trace Element Stress, Plant Roots: The Hidden Half, Waisel, Y. and Kafkafi, U., Eds., New York: Marcel Dekker, 1996, pp. 415-433.

    Google Scholar 

  149. Titov, A.F., Talanova, V.V., Boeva, N.P., Minaeva, S.V., and Soldatov, S.E., The Effect of Lead Ions on the Growth of Wheat, Barley, and Cucumber Seedlings, Fiziol. Rast. (Moscow), 1995, vol. 42, pp. 457-462 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  150. Titov, A.F., Talanova, V.V., and Boeva, N.P., Growth Responses of Barley and Wheat Seedlings to Lead and Cadmium, Biol. Plant., 1996, vol. 38, pp. 431-436.

    Google Scholar 

  151. Wierzbicka, M. and Obidzinska, J., The Effect of Lead on Seed Imbibitions and Germination in Different Plant Species, Plant Sci., 1998, vol. 137, no. 2, pp. 155-171.

    Google Scholar 

  152. Mel'nichuk, Yu.P., Vliyanie ionov kadmiya na kletochnoe delenie i rost rastenii (The Effect of Cadmium Ions on the Cell Division and Plant Growth), Kiev: Naukova Dumka, 1990.

    Google Scholar 

  153. Nesterova, A.N., The Effect of Lead, Cadmium, and Zinc Ions on the Cell Arrangement in the Meristem and the Growth of Maize Seedlings, Cand. Sci. (Biol.) Dissertation, Moscow: Moscow Gos. Univ., 1989.

    Google Scholar 

  154. Neiboer, E. and Richardson, D.H.S., The Replacement of the Non-Descriptive Term “Heavy Metals” by a Biologically and Chemically Significant Classification of Metal Ions, Environ. Pollut., 1980, vol. 1, pp. 3-26.

    Google Scholar 

  155. Karataglis, S., Estimation of the Toxicity of Different Metals, Using as Criterion the Degree of Root Elongation in Triticum aestivum Seedlings, Phyton, 1987, vol. 26, pp. 209-217.

    Google Scholar 

  156. Arambasic, M.B., Bjelic, S., and Subakov, G., Acute Toxicity of Heavy Metals (Copper, Lead, Zinc), Phenol and Sodium on Allium cepa L., Lepidium sativum L. and Daphnia magna: Comparative Investigations and the Practical Applications, Water Res., 1995, vol. 29, pp. 497-503.

    Google Scholar 

  157. Wong, J.S., Lam, H.M., Dhillion, E., Tam, N.F.Y., and Leung, W.H., Physiological Effect and Uptake of Cadmium in Pisum sativum, Environ. Int., 1988, vol. 14, pp. 535-543.

    Google Scholar 

  158. Arduini, I., Godbold, D.L., and Onnis, A., Cadmium and Copper Change Root Growth and Morphology of Pinus pinea and Pinus pinaster Seedlings, Physiol. Plant., 1994, vol. 92, pp. 675-680.

    Google Scholar 

  159. Ivanov, V.B., Root Growth Responses to Chemicals, Sov. Sci. Rev., Ser. D, 1994, pp. 1-70.

  160. Hammett, F.S., Studies in the Biology of Metals: The Influence of Lead on Mitosis and Cell Size in the Growing Root, Protoplasma, 1929, vol. 5, pp. 535-542.

    Google Scholar 

  161. Clain, E. and Daysson, G., Cytotoxicite du cadmium: etude sur les meristemes radiculaires d'Allium sativum L., C. R. Soc. Biol., 1977, vol. 171, pp. 1151-1155.

    Google Scholar 

  162. Wierzbicka, M., Resumption of Mitotic Activity in Allium cepa Root Tips during Treatment with Lead Salts, Environ. Exp. Bot., 1994, vol. 34, pp. 173-180.

    Google Scholar 

  163. Ivanov, V.B., Bystrova, E.I., Obroucheva, N.V., Antipova, O.V., Sobotik, M., and Bergmann, H., Growth Response of Barley Roots as an Indicator of Lead-Toxic Effects, Angew. Bot., 1998, vol. 72, pp. 140-143.

    Google Scholar 

  164. Borboa, L. and Delatorre, C., The Genotoxicity of Zn(II) and Cd(II) in Allium cepa Root Meristematic Cells, New Phytol., 1996, vol. 134, pp. 481-486.

    Google Scholar 

  165. Wozny, A. and Jerczynska, E., The Effect of Lead on Early Stages of Phaseolus vulgaris L. Growth in in vitro Conditions, Biol. Plant., 1991, vol. 33, pp. 32-39.

    Google Scholar 

  166. Lui, D., Jiang, W., Wang, W., and Zhai, L., Evaluation of Metal Ion Toxicity on Root Tip Cells by the Allium Test, Israel J. Plant Sci., 1995, vol. 43, pp. 125-133.

    Google Scholar 

  167. Wierzbicka, M., Disturbances in Cytokinesis Caused by Inorganic Lead, Environ. Exp. Bot., 1989, vol. 29, pp. 123-133.

    Google Scholar 

  168. Alex, S. and Dupuis, P., FT-IR and Raman Investigation of Cadmium by DNA, Inorg. Chem. Acta., 1989, vol. 157, pp. 271-282.

    Google Scholar 

  169. Margoshes, M. and Vallee, B.L., A Cadmium Protein from Equine Renal Cortex, J. Am. Chem. Soc., 1957, vol. 79, pp. 4813-4814.

    Google Scholar 

  170. Stone, H. and Overnell, J., Non-Metallothionein Cadmium Binding Proteins, Comp. Biochem. Physiol., 1985, vol. 80, pp. 9-14.

    Google Scholar 

  171. Burdin, K.S. and Polyakova, E.E., Metallothioneins, Their Structures, and Functions, Usp. Sovrem. Biol., 1987, vol. 103, pp. 390-400.

    Google Scholar 

  172. Rauser, W.E., Phytochelatins, Annu. Rev. Biochem., 1990, vol. 59, pp. 61-86.

    Google Scholar 

  173. Kondo, N., Imai, K., Isobe, M., Goto, T., Murasugi, A., Wada-Nakagawa, C., and Hayashi, Y., Cadystin A and B, Major Subunit Peptides Comprising Cadmium Binding Peptides Induced in Fission Yeast—Separation, Revision of Structures and Synthesis, Tetrahedron Lett., 1984, vol. 25, pp. 3869-3872.

    Google Scholar 

  174. Grill, E., Winnacker, E.-L., and Zenk, M.H., Phytochelatins: The Principal Heavy-Metal Complexing Peptides of Higher Plants, Science, 1985, vol. 230, pp. 674-676.

    Google Scholar 

  175. Grill, E., Winnacker, E.-L., and Zenk, M.H., Phytochelatins, a Class of Heavy-Metal-Binding Peptides from Plants Are Functionally Analogous to Metallothioneins, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 439-443.

    Google Scholar 

  176. Grill, E., Loffler, S., Winnacker, E.-L., and Zenk, M.N., Phytochelatins, the Heavy-Metal-Binding Peptides of Plants, Are Synthesized from Glutathione by a Specific γ-Glutamylcysteine Dipeptidyl Transpeptidase (Phytochelatin Synthase), Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 6838-6842.

    Google Scholar 

  177. Rauser, W.E., Phytochelatins and Related Peptides: Structure, Biosynthesis and Function, Plant Physiol., 1995, vol. 109, pp. 1141-1149.

    Google Scholar 

  178. Grill, E., Gekeler, W.K., Winnacker, E.-L., and Zenk, M.H., Homo-Phytochelatins Are Heavy Metal Binding Peptides of Homo-Glutathione Containing Fabales, FEBS Lett., 1986, vol. 205, pp. 47-50.

    Google Scholar 

  179. Klapheck, S., Fliegner, W., and Zimmer, I., Hydroxymethyl-Phytochelatins [(γ-Glutamylcysteine)n-Serine] Are Metal-Induced Peptides of the Poaceae, Plant Physiol., 1994, vol. 104, pp. 1325-1332.

    Google Scholar 

  180. Grunhage, L., Weigel, H.-J., Ilge, D., and Jager, H.J., Isolation and Partial Characterization of a Cadmium-Binding Protein from Pisum sativum, J. Plant. Physiol., 1990, vol. 129, pp. 327-334.

    Google Scholar 

  181. Reese, R.N. and Wagner, G.J., Properties of Tobacco (Nicotiana tabacum) Cadmium-Binding Peptide(s), Biochem. J., 1987, vol. 241, pp. 641-647.

    Google Scholar 

  182. Robinson, N.J., Tommey, A.M., Kuske, C., and Jackson, P.J., Plant Metallothioneins, Biochem. J., 1993, vol. 295, pp. 1-10.

    Google Scholar 

  183. Tukendorf, A. and Rauser, W.E., Changes in Glutathione and Phytochelatins in Roots of Maize Seedlings Exposed to Cadmium, Plant Sci., 1990, vol. 70, pp. 155-166.

    Google Scholar 

  184. Klapheck, S., Schlunz, S., and Bergmann, L., Synthesis of Phytochelatins and Homo-Phytochelatins in Pisum sativum L., Plant Physiol., 1995, vol. 107, pp. 515-521.

    Google Scholar 

  185. Rai, U.N., Tripathi, R.D., Gupta, M., and Chandra, P., Induction of Phytochelatins under Cadmium Stress in Water Lettuce (Pistia stratiotes L.), J. Environ. Sci. Health, 1995, vol. 30, pp. 2007-2026.

    Google Scholar 

  186. Gupta, M., Rai, U.N., Tripathi, R.D., and Chandra, P., Lead-Induced Changes in Glutathione and Phytochelatin in Hydrilla verticillata Royle, Chemosphere, 1995, vol. 30, pp. 2011-2020.

    Google Scholar 

  187. Ruegsegger, A., Schmutz, D., and Brunold, C., Regulation of Glutathione Synthesis by Cadmium in Pisum sativum L., Plant Physiol., 1990, vol. 93, pp. 1579-1584.

    Google Scholar 

  188. Coi, H.R., Hwang, I.D., Lee, S.H., and Kwon, Y.M., Phytochelatins in Cadmium Treated Seedlings of Canavalia lineata, Mol. Cells, 1996, vol. 6, pp. 451-455.

    Google Scholar 

  189. Uotila, M., Aioub, A.A.A., Gullner, G., Komives, T., and Brunold, C., Induction of Glutathione Transferase Activity in Wheat and Pea Seedlings by Cadmium, Acta Biol. Hung., 1994, vol. 45, pp. 11-16.

    Google Scholar 

  190. Xiang, C. and Oliver, D.J., Glutathione Metabolic Genes Coordinately Respond to Heavy Metals and Jasmonic Acid in Arabidopsis, Plant Cell, 1998, vol. 10, pp. 1539-1550.

    Google Scholar 

  191. Vernoux, T., Wilson, R.C., Seeley, K.A., Reichheld, J.-P., Muroy, S., Brown, S., Maughan, S.C., Corbbett, C.S., van Montagu, M., Inze, D., May, M.J., and Sung, Z.R., The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 Gene Defines a Glutathione-Dependent Pathway Involved in Initiation and Maintenance of Cell Division during Postembryonic Root Development, Plant Cell, 2000, vol. 12, pp. 97-109.

    Google Scholar 

  192. Kneer, R. and Zenk, M.N., Phytochelatins Protect Plant Enzymes from Heavy Metal Poisoning, Phytochemistry, 1992, vol. 31, pp. 2663-2667.

    Google Scholar 

  193. Tomsett, A.B. and Thurman, D.A., Molecular Biology of Metal Tolerances of Plants, Plant Cell Environ., 1988, vol. 11, pp. 383-394.

    Google Scholar 

  194. Robinson, N.J., Wilson, J.R., Turner, J.S., Fordham-Skelton, A.P., and Groom, Q.J., Metal-Gene Interactions in Roots: Metallothionein-Like Genes and Iron Reductases, Plant Root-from Cells to Systems, Anderson, H.M. et al., Eds., Dordrecht: Kluwer, 1997, pp. 117-130.

    Google Scholar 

  195. Fuhrer, J., Ethylene Biosynthesis and Cadmium Toxicity in Leaf Tissue of Beans (Phaseolus vulgaris L.), Plant Physiol., 1982, vol. 70, pp. 162-167.

    Google Scholar 

  196. Fenik, S.I., Trofimyak, T.B., and Blyum, Ya.B., Development of Plant Tolerance to Heavy Metals, Usp. Sovrem. Biol., 1995, vol. 115, pp. 261-275.

    Google Scholar 

  197. Neumann, D., Lichtenberger, O., Gunther, D., Tschiersch, K., and Nover, L., Heat-Shock Proteins Induce Heavy-Metal Tolerance in Higher Plants, Planta, 1994, vol. 194, pp. 360-367.

    Google Scholar 

  198. Weinstein, L.H., Kaur-Sawhney, R., Rajam, M.V., Wettlaufer, S.H., and Galston, A.W., Cadmium-Induced Accumulation of Putrescine in Oat and Bean Leaves, Plant Physiol., 1986, vol. 82, pp. 641-645.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seregin, I.V., Ivanov, V.B. Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants. Russian Journal of Plant Physiology 48, 523–544 (2001). https://doi.org/10.1023/A:1016719901147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016719901147

Navigation