Skip to main content
Log in

Townsend's Hypothesis, Coherent Structures And Monin–Obukhov Similarity

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Townsend's hypothesis states that turbulence near a wall can be divided into an activepart that transports momentum, and an inactive part that does not, and that these twokinds of turbulence do not interact. Active turbulence is generated by wind shear and has properties that scale on local parameters of the flow, while inactive turbulence isthe product of energetic processes remote from the surface and scales on outer-layerparameters. Both kinds of motion can be observed in the atmospheric surface layer, soMonin–Obukhov similarity theory, which is framed in terms of local parameters only,can apply only to active motions. If Townsend's hypothesis were wrong, so that activeand inactive motions do interact in some significant way, then transport processes nearthe ground would be sensitive to outer-layer parameters such as boundary-layer depth,and Monin–Obukhov theory would fail.

Experimental results have shown that heat transport near the ground does depend onprocesses in the outer layer. We propose a mechanism for this whereby inactive motionsinitiate active, coherent ejection/sweep structures that carry much of the momentum andheat. We give evidence that the inactive motions take the form of streak patterns of fasterand slower air, and argue that these are induced by the pressure effects of large eddiespassing overhead. The streak pattern includes regions where faster streams of air overtakeand engulf slower-moving streaks. Transverse vortices form across the spines of the streaksat these places and some of them develop into horseshoe vortices. These horseshoe vorticesgrow rapidly and are rotated forward in the sheared flow so they soon contact the ground,squirting the air confined between the legs of the horseshoe vortex outwards as a forcefulejection. This model is consistent with a wide range of results from the field and laboratoryexperiments. Heat transport is significantly affected, so undermining the dimensionalassumptions of Monin–Obukhov similarity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfredsson, P. H. and Johansson, A. V.: 1984, ‘Time Scales in Turbulent Channel Flow’, Phys. Fluids 27, 1974-1981.

    Google Scholar 

  • Andreas, E. L.: 1987, ‘Spectral Measurements in a Disturbed Boundary Layer over Snow’, J. Atmos. Sci. 44, 1912-1939.

    Google Scholar 

  • Antonia, R. A. and Djendi, L.: 1997, ‘Reynolds Stress Producing Motions in Smooth and Rough Wall Boundary Layers’, in R. L. Panton (ed.), Self-Sustaining Mechanisms of Wall Turbulence, Advances in Fluid Mechanics 15, Computational Mechanics Publications, Southampton, pp. 181-199.

    Google Scholar 

  • Antonia, R. A. and Krogstad, P.: 1993, ‘Scaling of the Bursting Period in Turbulent Rough-Wall Boundary Layers’, Exp. Fluids 15, 82-84.

    Google Scholar 

  • Antonia, R. A., Chambers, A. J., Friehe, C. A., and Van Atta, C. W.: 1979, ‘Temperature Ramps in the Atmospheric Surface Layer’, J. Atmos. Sci. 36, 99-108.

    Google Scholar 

  • Bradshaw, P.: 1967, ‘Inactive Motion and Pressure Fluctuations in Turbulent Boundary Layers’, J. Fluid Mech. 30, 241-258.

    Google Scholar 

  • Bradshaw, P.: 1969, ‘The Structure of Turbulent Shear Flows’, in S. J. Kline, M. V. Morkovin, G. Sorovan et al. (eds.), in Proceedings of the 1968 AFOSR-IFP-Stanford Conference on Computation of Turbulent Boundary Layers, Stanford University, 1968, Stanford University, Dept. Mech. Eng., Palo Alto, pp. 403-423.

    Google Scholar 

  • Bradshaw, P.: 1978, ‘Comments on “Horizontal Velocity Spectra in an Unstable Surface Layer” ’, J. Atmos. Sci 35, 1768-1769.

    Google Scholar 

  • Corino, E. R. and Brodkey, R. S.: 1969, ‘A Visual Investigation of the Wall Region in Turbulent Flow’, J. Fluid Mech. 37, 1-30.

    Google Scholar 

  • Davison, D. S.: 1974, ‘The Translation Velocity of Convective Plumes’, Quart. J. Roy. Meteorol. Soc. 100, 572-592.

    Google Scholar 

  • Demare, S., Labraga, L., and Tournier, C.: 1999, ‘Comparison and Scaling of the Bursting Period in Rough and Smooth Walls Channel Flows’, ASME J. Fluids Eng. 121, 735-746.

    Google Scholar 

  • Derksen, W. J.: 1974, ‘Thermal Infrared Pictures and the Mapping of Microclimate’, Neth. J. Agric. Sci. 22, 119-132.

    Google Scholar 

  • Falco, R. E.: 1991, ‘A Coherent Structure Model of the Turbulent Boundary Layer and its Ability to Predict Reynolds Number dependence’, Phil. Trans. Roy. Soc. Lond. A 336, 103-129.

    Google Scholar 

  • Hagen, J. P. and Kurosaka, M.: 1993, ‘Corewise Cross-Flow Transport in Hairpin Vortices-The "Tornado Effect" ’, Phys. Fluids A 5, 3167-3174.

    Google Scholar 

  • Hetsroni, G., Mosyak, A., and Yarin, L. P.: 1997, ‘Thermal Streak Regeneration in the Wake of a Disturbance in a Turbulent Boundary Layer’, Int. J. Heat Mass Transfer 40, 4161-4168.

    Google Scholar 

  • Hinze, J.: 1975, Turbulence, McGraw-Hill, New York, 790 pp.

    Google Scholar 

  • Högström, U.: 1996, ‘Review of Some Basic Characteristics of the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 78, 215-246.

    Google Scholar 

  • Johansson, C., Smedman, A-S., Högström, U., Brasseur, J. G., and Khanna, S.: 2001, ‘Critical Test of the Validity of Monin-Obukhov Similarity during Convective Conditions’, J. Atmos. Sci. 58, 1549-1566.

    Google Scholar 

  • Kaimal, J. C.: 1978, ‘Horizontal Velocity Spectra in an Unstable Surface Layer’, J. Atmos. Sci. 35, 18-24.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, ‘Spectral Characteristics of Surface-Layer Turbulence’, Quart. J. Roy. Meteorol. Soc. 98, 563-589.

    Google Scholar 

  • Katul, G. G., Schieldge, J., Hsieh, C. I., and Vidakovic, B.: 1998, ‘Skin Temperature Perturbations Induced by Surface Layer Turbulence above a Grass Surface’,Water Resour. Res. 34, 1265-1274.

    Google Scholar 

  • Khanna, S. and Brasseur, J. G.: 1997, ‘Analysis of Monin-Obukhov Similarity from Large-Eddy Simulation’, J. Fluid Mech. 345, 251-286.

    Google Scholar 

  • Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P.W.: 1967, ‘The Structure of Turbulent Boundary Layers’, J. Fluid Mech. 30, 741-773.

    Google Scholar 

  • Lagouarde, J. P., Dubreton, S., Moreau, P., and Guyon, D.: 1997, ‘Analyse de l'Ergodicit, de la température de surface sur des couverts forestiers à diverse résolutions’, in G. Guyot and T. Phulpin (eds.), Physical Measurements and Signatures in Remote Sensing, Balkema, Rotterdam, pp. 303-310.

    Google Scholar 

  • Laubach, J., McNaughton, K. G., and Wilson, J. D.: 2000, ‘Heat and Water Vapour Diffusivities near the Base of a Disturbed Stable Internal Boundary Layer’, Boundary-Layer Meteorol. 94, 23-63.

    Google Scholar 

  • Lee, M. J., Kim, J., and Moin, P.: 1990, ‘Structure of Turbulence at High Shear Rate’, J. Fluid Mech. 216, 561-583.

    Google Scholar 

  • Lin, C-L.: 2000, ‘Local Pressure Transport Structure in a Convective Atmospheric Boundary Layer’, Phys. Fluids 12, 1112-1128.

    Google Scholar 

  • Mahrt, L. and Gibson, W.: 1992, ‘Flux Decomposition into Coherent Structures’, Boundary-Layer Meteorol. 60, 143-168.

    Google Scholar 

  • McNaughton, K. G. and Laubach, J.: 2000, ‘Power Spectra and Cospectra for Wind and Scalars in a Disturbed Surface Layer at the Base of an Advective Inversion’, Boundary-Layer Meteorol. 96, 143-185.

    Google Scholar 

  • Moeng, C. and Sullivan, P. P.: 1994, ‘A Comparison of Shear-and Buoyancy-Driven Planetary Boundary Layers’, J. Atmos. Sci. 51, 999-1022.

    Google Scholar 

  • Moss, R.W. and Oldfield,M. L. G.: 1996, ‘Effect of Free-Stream Turbulence on Flat-Plate Heat Flux Signals: Spectra and Eddy Transport Velocities’, ASME J. Turbomachinery 118, 461-467.

    Google Scholar 

  • Narasimha, R. and Kailas, S. V.: 1990, ‘Turbulent Bursts in the Atmosphere’, Atmos. Environ. 24A, 1635-1654.

    Google Scholar 

  • Offen, G. R. and Kline, S. J.: 1975, ‘A Proposed Model of the Bursting Process in Turbulent Boundary Layers’, J. Fluid Mech. 70, 209-228.

    Google Scholar 

  • Peltier, L. J., Wyngaard, J. C., Khanna, S., and Brasseur, J. G.: 1996, ‘Spectra in the Unstable Surface Layer’, J. Atmos. Sci. 53, 49-61.

    Google Scholar 

  • Rao, K. N., Narasimha, R., and Narayanan, M. A. B.: 1971, ‘The Bursting Phenomenon in a Turbulent Boundary Layer’, J. Fluid Mech. 48, 339-352.

    Google Scholar 

  • Robinson, S. K.: 1991, ‘Coherent Motions in the Turbulent Boundary Layer’, Annu. Rev. FluidMech. 23, 601-639.

    Google Scholar 

  • Schols, J. L. J., Jansen, A. E., and Krom, J. G.: 1985, ‘Characteristics of Turbulent Structures in the Unstable Atmospheric Surface Layer’, Boundary-Layer Meteorol. 33, 173-196.

    Google Scholar 

  • Shah, D. A. and Antonia, R. A.: 1989, ‘Scaling of the "Bursting" Period in Turbulent Boundary Layer and Duct Flows’, Phys. Fluids A 1, 318-325.

    Google Scholar 

  • Smeets, C. J. P., Duynkerke, P. G., and Vugts, H. F.: 1998, ‘Turbulence Characteristics of the Stable Boundary Layer over a Mid-Latitude Glacier. Part I: C combination of Katabatic and Large-Scale Forcing’, Boundary-Layer Meteorol. 87, 117-145.

    Google Scholar 

  • Smith, C. R., and Walker, J. D. A.: 1997, ‘Sustaining Mechanisms of Turbulent Boundary Layers: The Role of Vortex Development and Interaction’, in R. L. Panton (ed.), Self-Sustaining Mechanisms of Wall Turbulence, Advances in Fluid Mechanics 15, Computational Mechanics Publications, Southampton, pp. 273-308.

    Google Scholar 

  • Swearingen, J. D. and Blackwelder, R. F.: 1987, ‘The Growth and Breakdown of Streamwise Vortices in the Presence of a Wall’, J. Fluid Mech. 182, 255-290.

    Google Scholar 

  • Theodorsen, T.: 1952, ‘Mechanism of Turbulence’, in Proceedings of the Second Midwestern Conference on Fluid Mechanics, Columbus, Ohio, Ohio State University, pp. 1-18.

    Google Scholar 

  • Townsend, A. A.: 1961, ‘Equilibrium Layers and Wall Turbulence’, J. Fluid Mech. 11, 97-120.

    Google Scholar 

  • Weske, J. R. and Plantholt, A. H.: 1953, ‘Discrete Vortex Systems in the Transition Range of Fully Developed Flow in a Pipe’, J. Aerosol. Sci. 20, 717-718.

    Google Scholar 

  • Wilczak, J. M. and Tillman, J. E.: 1980, ‘The Three-Dimensional Structure of Convection in the Lower Atmospheric Surface Layer’, J. Atmos. Sci. 37, 2424-2443.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNaughton, K.G., Brunet, Y. Townsend's Hypothesis, Coherent Structures And Monin–Obukhov Similarity. Boundary-Layer Meteorology 102, 161–175 (2002). https://doi.org/10.1023/A:1013171312407

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013171312407

Navigation