Skip to main content
Log in

Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies[L.] Karst.)

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Relationships between tree parameters above ground and the biomass of the coarse root system were examined in six mixed spruce-beech stands in the Solling Mountain region in northwest Germany. The selected stands were located on comparable sites and covered an age range of 44 to 114 years. Coarse roots (d \ge 2 mm) of 42 spruce and 27 beech trees were sampled by excavating the entire root system. A linear model with logarithmic transformation of the variables was developed to describe the relationship between the coarse root biomass (CRB, dry weight) and the corresponding tree diameter at breast height (DBH). The coefficients of determination (R 2) attained values between 0.92 for spruce and 0.94 for beech; the logarithmic standard deviation values were between 0.29 and 0.43. A significantly different effect of tree species on the model estimates could not be detected by an analysis of co-variance (ANCOVA). For spruce, the derived relationships were similar to those reported in previous studies, but not for beech. Biomass partitioning in the tree compartments above and below ground differs significantly between spruce (coarse root/shoot ratio 0.16±0.06) and beech (coarse root/shoot ratio 0.10±0.03) in the mixed stands. These results are similar to those given in other studies involving pure spruce and beech stands on comparable sites in the region, although the ratios of pure stands in other regions growing under different site conditions are somewhat higher. Comparing trees of the same DBH classes, root/shoot ratios of spruce are 1.2 to 3 times higher than those of beech. Dominant spruce trees (DBH>60 cm) attained the highest ratios, suppressed beech trees (DBH<10 cm) the lowest. Site conditions of varying climate and soils and interspecific tree competition are likely to affect root/shoot ratio and DBH-coarse root biomass relationships. The greater variability in beech compared with spruce indicates a high 'plasticity' and adaptability of beech carbon allocation. Thus, the derived equations are useful for biomass estimates of coarse roots involving trees of different ages in mixed stands of spruce and beech in the Solling Mountains. However, application of these relationships to stands in other regions would need further testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • AK Standortskartierung 1985 Forstliche Wuchsgebiete and Wuchsbezirke in der Bundesrepublik Deutschland. Landwirtschaftsverlag, Münster-Hiltrup, 170 pp.

    Google Scholar 

  • Axelson E and Axelson B 1986 Changes in carbon allocation patterns in spruce and pine trees following irrigation and fertilization. Tree Physiol. 2, 1898–204.

    Google Scholar 

  • Bartelink H H 1998 A model of dry matter partitioning in trees. Tree Physiol. 18, 91–101.

    PubMed  Google Scholar 

  • Bengough A G, Castrignano A, Páges L and Van Noordwijk M 2000 Sampling strategies, scaling, and statistics. In Root Methods: A Handbook. Eds. A L Smit, A G Bengough, C Engels, M Van Noordwijk, S Pellerin and S C Van de Geijn. pp. 147–173. Springer, Berlin Heidelberg.

    Google Scholar 

  • BMELF [Bundesministerium für Ernährung, Landwirtschaft und Forsten, Ed.] 1992 Bundeswaldinventur: Inventurbericht und Übersichtstabellen für die Bundesrepublik Deutschland. BMELF, Bonn. 117 pp.

    Google Scholar 

  • Bolte A, Rahmann T, Kuhr M, Spanuth P, Murach D and Gadow, K von 2003 Beziehungen zwischen Baumdimension und Wurzelstruktur in Fichten-Buchenmischbeständen. In Forstwirtschaft im Ballungsraum, Bericht der Jahrestagung 2002 der Sektion Waldbau im DVFF. Ed. Berliner Forsten. pp. 85–96.Senatsverwaltung für Stadtentwicklung, Berlin.

    Google Scholar 

  • Cairns M A, Brown S, Helmer E H and Baumgardner G A 1997 Root biomass allocation in the world's upland forests. Oecologia 111, 1–11.

    Article  Google Scholar 

  • Cannel M G R 1985 Dry matter partitioning in tree crops. In Attributes of Trees as Crop Plants. Eds. M G R Cannell and J E Jackson. pp. 137–159. Institute of Terrestrial Ecology, NERC, Abbots Ripton, Huntingdon, England.

    Google Scholar 

  • Cannel M G R and Willett S C 1976 Shoot phenology, dry matter distribution and root:shoot ratios of provenances of Populus trichocarpa, Picea sitchiensis and Pinus contorta growing in Scotland. Silvae Genet. 32, 195–202.

    Google Scholar 

  • Causton D R 1985 Biometrical, structural and physiological relationships among tree plants. In Attributes of Trees as Crop Plants. Eds. M G R Cannell and J E Jackson. pp. 137–159. Institute of Terrestrial Ecology, NERC, Abbots Ripton, Huntingdon, England.

    Google Scholar 

  • Clemensson-Lindell A and Persson H 1993 Long-term effects of liming on the fine-root standing crop of Picea abies and Pinus sylvestris in relation to chemical change in the soil. Scand. J. For. Res. 8, 384–394.

    Google Scholar 

  • Dahmer J 1998 Einfluß der Pflanzmethode nach fast 40 Jahren noch erkennbar. AFZ/Der Wald 53, 964–965.

    Google Scholar 

  • DeAngelis D L, Gardner R H and Shugart H H 1981 Productivity of forest ecosystems studies during the IBP: The woodland data sets. InDynamic Properties of Forest Ecosystems. Ed. D E Reichle. pp. 567–672. Cambridge University Press, Cambridge.

    Google Scholar 

  • Drexhage M and Colin F 2001 Estimation root system biomass from breast-height diameters. Forestry 74, 491–497.

    Article  Google Scholar 

  • Drexhage M and Gruber F 1999a Architecture of the skeletal root system of 40-year-old Picea abies on strongly acidified soils in the Harz Mountains (Germany). Can. J. For. Res. 28, 13–22.

    Google Scholar 

  • Drexhage M and Gruber F 1999b Above-and below-stump relationships for Picea abies: estimating root system biomass from breast-height diameters. Scand. J. For. Res. 14, 328–333.

    Google Scholar 

  • Ellenberg H, Mayer R and Schauermann, J 1986 Ökosystemforschung – Ergebnisse der Sollingprojektes. Eugen Ulmer, Stuttgart, 507 pp.

    Google Scholar 

  • Ericsson T, Rytter L and Vapaavuori E 1996 Physiology of carbon allocation in trees. Biomass Bioenergy 11, 115–127.

    Article  CAS  Google Scholar 

  • Erlbeck R, Haseder I E and Stinglwagner G K F 1998 Das Kosmos Wald-und Forstlexikon. Kosmos, Stuttgart, 880 pp.

    Google Scholar 

  • Fehrmann L, Kuhr M and Gadow K von 2003 Zur Analyse der Grobwurzelsysteme großer Waldbäume an Fichte [Picea abies (L.) Karst.] und Buche [Fagus sylvatica L.]. Forstarchiv 74, 96–102.

    Google Scholar 

  • Finney D J 1941 On the distribution of avariable whose logarithm is normally distributed. J. R. Statist. Soc. B 7, 155–161.

    Google Scholar 

  • Gadow K von and Puumalainen J 1998 Neue Herausforderungen für die Waldökosystemplanung. AFZ/Der Wald 53, 1248–1250.

    Google Scholar 

  • Gower S T, Pongracic S and Landsberg J J 1996 A global trend in belowground carbon allocation: Can we use relationship at smaller scales? Ecology 77, 1750–1755.

    Google Scholar 

  • Grier C C, Vogt K A, Keyes M L and Edmonds R L 1981 Biomass distribution and above-and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Can J. For. Res. 11, 155–167.

    Google Scholar 

  • Hendriks C M A and Bianchi F J J A 1995 Root density and root biomass in pure and mixed forests of Douglas fir and beech. Netherl. J. Agricult. Sci. 43, 321–331.

    Google Scholar 

  • Hertel D 1999 Das Feinwurzelsystem von Rein-und Mischbeständen der Rotbuche: Struktur, Dynamik und interspezifische Konkurrenz. Diss. Bot. 317, 1-1-90.

    Google Scholar 

  • Hoffmann C W and Usoltsev V A 2001 Modelling root biomass distribution in Pinus sylvestris forests of the Turgai Depression of Kazakhstan. For. Ecol. Manage. 149, 103–114.

    Article  Google Scholar 

  • Horn A 2002 Konkurrenz zwischen natürlich verjüngten Eschen und Buchen in Bestandeslücken: Wachstum, Feinwurzelverteilung und ökophysiologische Reaktion auf Austrocknung. Ber. Forschungsz. Waldökosyst. A 177, 1–203.

    Google Scholar 

  • Hush B, Beers T W and Kershaw J A Jr 2003 Forest mensuration. 4th ed. John Wiley & Sons Inc., Hoboken, New Jersey, 443 pp.

    Google Scholar 

  • Keyes M R and Grier C C 1981 Above-and below-ground net production in 40-year-old Douglas-fir stands on low and high productivity sites. Can. J. For. Res. 11, 599–605.

    Google Scholar 

  • Kira T and Shidei H 1967 Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jap. J. Ecol. 17, 70–85.

    Google Scholar 

  • Kraft G 1884 Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben. Klindworth, Hannover. 147 pp.

    Google Scholar 

  • Kuhr M 2000 Grobwurzelarchitektur in Abhängigkeit von Baumart, Alter, Standort und sozialer Stellung. Dissertation Fakultät für Forstwissenschaften und Waldökologie der Georg-August-Universität Göttingen. 136 pp. (http://webdoc.sub.gwdg.de/diss/2000/kuhr/index.htm)

  • Kuiper L C and Coutts M P 1992 Spatial disposition and extension of the structural root system of Douglas-fir. For. Ecol. Manage. 47, 111–125.

    Article  Google Scholar 

  • Kurz W A, Beukema S J and Apps M J 1996 Estimation root biomass and dynamics for the carbon budget of the Canadian forest sector. Can. J. For. Res. 26, 1973–1979.

    Google Scholar 

  • Lacointe A 2000 Carbon allocation among tree organs: A review of basic processes and representation in functional-structural tree models. Ann. For. Sci. 57, 521–533.

    Article  Google Scholar 

  • Laiho R and Finér L 1996 Changes in root biomass after water-level drawdown on pine mires in southern Finland. Scand. J. For. Res. 11, 251–260.

    Google Scholar 

  • Larcher W 1995 Physiological plant ecology. 3rd edition. Springer, Berlin. 506 pp.

    Google Scholar 

  • Le Goff N and Ottorini J-M 2001 Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in northeast France. Ann. For. Sci. 58, 1–13.

    Article  Google Scholar 

  • Lebaube S, Le Goff N, Ottorini J-M and Granier A 2000 Carbon balance and tree growth in a Fagus sylvatica stand. Ann. For. Sci. 57, 49–61.

    Google Scholar 

  • Lee Do-Hyung 1998 Architektur der Wurzelsysteme von Fichten (Picea abies [L.] Karst.) auf unterschiedlich versauerten Standorte. Ber. Forschungsz. Waldökosyst. A 153. 147 pp.

  • Li Z, Kurz W A, Apps M J and Beukema S J 2003 Belowground bio-mass dynamics in the Carbon Budget Model of Canadian Forest Sector: Recent improvements and implications for the estimation of NPP and NEP. Can J. For. Res. 33, 126–136.

    Google Scholar 

  • Linder S and Axelson B 1982 Changes in carbon uptake and allocation patterns as a result of irrigation and fertilization in a young Pinus sylvestris stand. In Carbon Uptake and Allocation in Sub-alpine Ecosystems as a Key to Management. Ed. R H Waring. pp. 38–44. Oregon State University, Corvallis, Oregon.

    Google Scholar 

  • Linder S and Troeng E 1980 The seasonal variation in stem and coarse root respiration of a 20-year-old Scots pine stand (Pinus sylvestris L.) In Structure and Function of Northern Coniferous Forest: An Ecosystem Study Ed. T Persson. pp. 165–181. Ecol. Bull. 32. Stockholm.

  • Murphy P G and Lugo A E 1986 Structure and biomass of a sub-tropical dry forest in Puerto Rico. Biotropica 18, 89–96.

    Google Scholar 

  • Nadelhoffer K J, Aber J D and Melillo J M 1985 Fine root, net primary production, and soil nitrogen availability – A new hypothesis. Ecology 66, 1377–1390.

    Google Scholar 

  • Newton M and Cole E 1991 Root development in planted Douglas-fir under varying competetive stress. Can. J. For. Res. 21, 25–31.

    Google Scholar 

  • Nielsen C C N 1995 Detailed instructions for root architecture assessments with the Rootarch method. Arboretum, Royal Vet. and Agriculture University, Int. Rep. No. 7, Hoersholm (DK), 12 pp.

  • Nihlgård B 1972 Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. Oikos 23, 69–81.

    Google Scholar 

  • Olshoorn A F M., Bartelink H H, Gardiner J J, Pretzsch H, Hekhuis H J and Franc A (Eds.) 1999 Management of mixed-species forest: Silviculture and economics. IBN Scient. Contrib. 15. 389 pp.

  • Otto J 1991 Langfristige, ökologische Waldbauplanung für die Niedersächsischen Landesforsten Bd. 2: Das niedersächsische Bergland und Gesamtauswertung. Aus dem Walde 43. 527 pp.

  • Otto J 1992 Rahmenbedingungen und Möglichkeiten zur Verwirklichung der ökologischen Waldentwicklung in den niedersächsischen Landesforsten. Forst Holz 47, 75–78.

    Google Scholar 

  • Pellinen P 1986 Biomasseuntersuchungen im Kalkbuchenwald. Dissertation Forstl. Fachbereich Georg-August-Universität Göttingen. 145 pp.

  • Redde N 2002 Risiko von Sturm-und Folgeschäden in Abhängigkeit vom Standort und von waldbaulichen Eingriffen bei der Umwandlung von Fichtenreinbeständen. Ber. Forschungsz. Waldökosysteme A 179, 1–171.

    Google Scholar 

  • Rothe A 1997 Einfluss des Baumartenanteils auf Durchwurzelung, Wasserhaushalt, Stoffhaushalt und Zuwachsleitung eines Fichten-Buchen-Mischbestandes am Standort Höglwald. Forstl. Forschungsber. München 163, 1–213.

    Google Scholar 

  • Rysavy T and Roloff A 1994 Ursachen der Vereschung in Mischbeständen und Vorschläge zu ihrer Vermeidung. Forst Holz 49, 392–395.

    Google Scholar 

  • Santantonio D, Hermann R K and Overton W S 1977 Root biomass studies in forest ecosystems. Pedobiologia 17, 1–31.

    CAS  Google Scholar 

  • Schmid I and Kazda M 2001 Vertical distribution and radial growth of coarse roots in pure and mixed stands of Fagus sylvatica and Picea abies. Can. J. For. Res. 31, 539–548.

    Article  Google Scholar 

  • Spinnler D, Egli P and Körner C 2003 Provenance effects and allometry in beech and spruce under elevated CO2 and nitrogen on two different forest soils. Basic Appl. Ecol. 4, 467–478.

    Article  Google Scholar 

  • StatSoft, Inc. 2003 Electronic Statistics Textbook. Tulsa, OK. http://www.statsoft.com/textbook/stathome.html.

  • Sutton R F and Tinus R W 1983 Root and root system terminology. Forest Science Monogr. 24. Supplement to Forest Science 29, 4. 137 pp.

  • Thies W G and Cunningham P G 1996 Estimating large-root biomass from stump and breast-height diameter for Douglas-fir in western Orgeon. Can. J. For. Res. 26, 237–243.

    Google Scholar 

  • Usoltsev V A and Vanclay J K 1993 Biomass growth and structure of pine plantations and natural forests on dry steppe in Kazakhstan. Proceedings from the IUFRO Conference held in Copenhagen, 14–17 June, 267–281.

  • Vogt K A, Vogt D J, Moore E E and Sprugel D G 1989 Methodological considerations in measuring biomass, production, respiration and nutrient resorption for tree roots in natural ecosystems. In Application of Continuous and Steady-state Methods to Root Biology. Eds. J G Torrey and L J Winship. pp. 217–232. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolte, A., Rahmann, T., Kuhr, M. et al. Relationships between tree dimension and coarse root biomass in mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies[L.] Karst.). Plant Soil 264, 1–11 (2004). https://doi.org/10.1023/B:PLSO.0000047777.23344.a3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLSO.0000047777.23344.a3

Navigation