Skip to main content
Log in

Antichains of Bounded Size in the Class of Tournaments

  • Published:
Order Aims and scope Submit manuscript

Abstract

Tournament embedding is an order relation on the class of finite tournaments. An antichain is a set of finite tournaments that are pairwise incomparable in this ordering. We say an antichain \(\mathcal{A}\) can be extended to an antichain \(\mathcal{B}{\text{ if }}\mathcal{A} \subseteq \mathcal{B}\). Those finite antichains that can not be extended to antichains of arbitrarily large finite cardinality are exactly those that contain a member of each of four families of tournaments. We give an upper bound on the cardinality of extensions of such antichains. This bound depends on the maximum order of the tournaments in the antichain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cameron, P.: Orbits of permutation groups on unordered sets II, J. London Math. Soc. 23 (1981), 249–264.

    MATH  MathSciNet  Google Scholar 

  2. Cherlin, G. L.: Combinatorial problems connected with finite homogeneity, In: Contemp. Math. 131, Amer. Math. Soc., Providence, 1992, pp. 3–30.

    Google Scholar 

  3. Cherlin, G. L. and Latka, B. J.: Minimal Antichains in well-founded quasi-orders with an application to tournaments, J. Combin. Theory B 80 (2000), 258–276.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cherlin, G. L. and Latka, B. J.: A decision problem involving tournaments, DIMACS Technical Report 96-11, 1996.

  5. Ding, G., Oporowski, B. and Oxley, J.: On infinite antichains of matroids, J. Combin. Theory B 63 (1995), 21–40.

    Article  MATH  MathSciNet  Google Scholar 

  6. Ding, G.: Subgraphs and well-quasi-ordering, J. Graph Theory 16(5) (1992), 489–502.

    MATH  MathSciNet  Google Scholar 

  7. Ding, G.: e-mail correspondence.

  8. Erdös, P. and Moser, L.: A problem on tournaments, Canad. Math. Bull. 7 (1964), 351–356.

    MATH  MathSciNet  Google Scholar 

  9. Gustedt, J.: Finiteness theorems for graphs and posets obtained by compositions, Order 15 (1999), 203–220.

    Article  MathSciNet  Google Scholar 

  10. Henson, C. W.: Countable homogeneous relational systems and categorical theories, J. Symb. Logic 37 (1972), 494–500. MR 48 #94.

    Article  MATH  MathSciNet  Google Scholar 

  11. Jenkyns, T. A. and Nash-Williams, C. St. J. A.: Counterexamples in the theory of well-quasiordered sets, In: Proc. 2nd Ann Arbor Graph Theory Conf., 1968, pp. 87–91.

  12. Klavžar, S. and Petkovšek, M.: On characterizations with forbidden subgraphs, In: Combinatorics, North-Holland, Amsterdam, 1988, pp. 331–339.

    Google Scholar 

  13. Knuth, D.: Axioms and Hulls, Lecture Notes in Comput. Sci. 606, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  14. Lachlan, A. H.: Countable homogeneous tournaments, Trans. Amer. Math. Soc. 284 (1984), 431–461. MR 85i:05118.

    Article  MATH  MathSciNet  Google Scholar 

  15. Latka, B. J.: A classification of antichains of finite tournaments, DIMACS Technical Report 2002-24, 2002.

  16. Latka, B. J.: Finitely constrained classes of homogeneous directed graphs, J. Symb. Logic 59 (1994), 124–139. MR 95d:03065.

    Article  MATH  MathSciNet  Google Scholar 

  17. Latka, B. J.: Some classes of tournaments defined by obstructions, Congressus Numerantium 104 (1994), 81–87.

    MATH  MathSciNet  Google Scholar 

  18. Latka, B. J.: Structure theorem for tournaments omitting N 5, J. Graph Theory 42 (2003), 165–192.

    Article  MATH  MathSciNet  Google Scholar 

  19. Latka, B. J.: Structure theorem for tournaments omitting IC 3 (I, I,L 3 ), to appear in J. Graph Theory.

  20. Latka, B. J.: Tournaments, embeddings, and well-quasi-orderings, In: Graph Theory, Combinatorics, and Applications, Proc. 7th Quadrennial International Conference on the Theory and Applications of Graphs, Vol. 2, 1995, pp. 685–696. MR 95d:03065.

    MATH  MathSciNet  Google Scholar 

  21. Moon, J. W.: Tournaments whose subtournaments are irreducible or transitive, Canad. Math. Bull. 21 (1979), 75–79. MR 95d:03065.

    MathSciNet  Google Scholar 

  22. Robertson, N. and Seymour, P. D.: Graph minors #x2013; a survey, In: Surveys in Combinatorics, 1985, London Math. Soc. Lecture Notes Ser. 103, Cambridge Univ. Press, 1985, pp. 155–171.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latka, B.J. Antichains of Bounded Size in the Class of Tournaments. Order 20, 109–119 (2003). https://doi.org/10.1023/B:ORDE.0000009244.53720.af

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ORDE.0000009244.53720.af

Navigation