Skip to main content
Log in

Calcium Events in Smooth Muscles and Their Associated Cells

  • Published:
Neurophysiology Aims and scope

Abstract

Calcium is essential for contraction of smooth muscle cells (SMC). The contractile proteins are activated by calcium released from the stores within the cell in response to calcium entry through voltage-dependent channels and/or activation of receptors, which often increase D-myoinositol 1,4,5-trisphosphate (IP3) concentration in the cell through stimulation of phospholipase C (PLC). A global rise in the concentration of ionized calcium, [Ca2+] i , which gives rise to contraction or shortening, is initiated at preferred locations in the cell, termed frequent discharge sites (FDS). In many SMC these sites often spontaneously discharge calcium packets; this is caused by bursts of openings of calcium channels (commonly ryanodine receptors, RyR, or IP3 receptors) in the sarcoplasmic reticulum (SR). The rise in [Ca2+] i may be detected by introducing calcium indicator dyes into the cell; the release of a calcium packet then gives rise to a rapid increase in fluorescence, or “spark.” A spark may activate a burst of openings of calcium-activated potassium or chloride channels in the cell membrane, so giving rise to spontaneous transient outward currents (STOC) or spontaneous transient inward currents (STIC), respectively. The term “spark” should probably be reserved for a calcium event resulting from the discharge of a single cluster, or domain, of RyR channels; when IP3; concentrations are raised, adjacent domains may discharge closely in time, giving rise to larger calcium events, activation of more distant domains by a fire-diffuse-fire mechanism, and saltatory propagation of a calcium wave leading to a global rise in [Ca2+] i and contraction of the cell. In many smooth muscle tissues, including some blood vessels, SMC are associated with interstitial cells (IC); well-known examples are the IC of Cajal in the gut muscles. In the media of small mesenteric arteries and portal vein, the IC share many properties with the SMC but, unlike the latter, have many thin processes and do not contract to agents, which contract the SMC. The role of these IC in blood vessels is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. A. Murphy, J. T. Herlihy, and J. Megerman, “Force-generating capacity and contractile protein content of arterial smooth muscle, ” J.Gen.Physiol., 64, 691–705(1974).

    Google Scholar 

  2. G. Gabella, “Structural changes in smooth muscle cells during isotonic contraction, ” Cell Tissue Res., 170, 187–201(1976).

    Google Scholar 

  3. L. Thuneberg, “Interstitial cells of Cajal: intestinal pacemaker cells, ” Adv.Anat., Embryol., Cell Biol., 71, 1–130 (1982).

    Google Scholar 

  4. G. P. Sergeant, M. A. Hollywood, K. D. McCloskey, et al., “Specialized pacemaking cells in the rabbit urethra, ” J.Physiol., 526, 359–366(2000).

    Google Scholar 

  5. K. D. McCloskey and A. M. Gurney, “Kit-positive cells in the guinea-pig bladder, ” J.Urol., 168, 832–836 (2002).

    Google Scholar 

  6. K. D. McCloskey, M. A. Hollywood, K. D. Thornbury, et al., “Kit-like immunopositive cells in sheep mesenteric lymphatic vessels, ” Cell Tissue Res., 310, 77–84(2002).

    Google Scholar 

  7. O. V. Povstyan, D. V. Gordienko, M. I. Harhun, and T. B. Bolton, “Identification of interstitial cells of Cajal in the rabbit portal vein, ” Cell Calcium, 33, 223–239(2003).

    Google Scholar 

  8. V. Pucovsky, R. F. Moss, and T. B. Bolton, “Non-contractile cells with thin processes resembling interstitial cells of Cajal found in the wall of guinea pig mesenteric arteries, ” J.Physiol. (2003).

  9. G. Gabella, “Structure of smooth muscles, ” in: Smooth Muscle: An Assessment of Current Knowledge, Chap. 1, E. Bulbring et al. (eds.) Edward Arnold, London (1981), pp. 1–46.

    Google Scholar 

  10. G. Gabella “Structural apparatus for force transmission in smooth muscle, ” Physiol.Rev., 64, 455–577(1984).

    Google Scholar 

  11. A. Halayko and J. Solway, “Molecular mechanisms of phenotypic plasticity in smooth muscle cells, ” J.Appl. Physiol., 90, 358–368(2001).

    Google Scholar 

  12. A. P. Somlyo and A. V. Somlyo, “Signal transduction by G-proteins, Rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II, ” J.Physiol., 522, 177–185(2000).

    Google Scholar 

  13. J. V. Small and M. Gimona, “The cytoskeleton of the vertebrate smooth muscle cell, ” Acta Physiol.Scand., 164, 341–348(1998).

    Google Scholar 

  14. D. V. Gordienko, I. A. Greenwood, and T. B. Bolton, “Direct visualization of sarcoplasmic reticulum regions discharging Ca2+ sparks in vascular myocytes, ” Cell Calcium, 29, 13–28(2001).

    Google Scholar 

  15. D. V. Gordienko, T. B. Bolton, and M. B. Cannell, “Variability in spontaneous subcellular calcium release in guinea-pig ileum smooth muscle cells, ” J.Physiol., 507, 707–720(1998).

    Google Scholar 

  16. M. T. Kirber, E. F. Etter, K. A. Bellve, et al., “Relationship of Ca2+ sparks to STOCs studied with 2D and 3D imaging in feline oesophageal smooth muscle cells, ” J.Physiol., 531, 315–327(2001).

    Google Scholar 

  17. T. B. Bolton and D. V. Gordienko, “Confocal imaging of calcium release events in single smooth muscle cells, ” Acta Physiol.Scand., 164, 567–575(1998).

    Google Scholar 

  18. C. D. Benham and T. B. Bolton, “Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit, ” J.Physiol., 381, 385–406(1986).

    Google Scholar 

  19. Q. Wang, R. C. Hogg, and W. A. Large, “Properties of spontaneous inward currents recorded in smooth muscle cells isolated from the rabbit portal vein, ” J.Physiol., 451, 525–537(1992).

    Google Scholar 

  20. J. Mironneau, S. Arnaudeau, N. Macrez-Lepretre, and F. X. Boittin, “Ca2+ sparks and Ca2+ waves activate different Ca2+-dependent ion channels in single myocytes from rat portal vein, ” Cell Calcium, 20, 153–160(1996).

    Google Scholar 

  21. V. Pucovsky, D. V. Gordienko, and T. B. Bolton, “Effect of nitric oxide donors and noradrenaline on Ca2+ release sites and global intracellular [Ca2+]i in myocytes from guineapig small mesenteric arteries, ” J.Physiol., 539, 25–39 (2002).

    Google Scholar 

  22. S. Arnaudeau, N. Macrez-Lepretre, and J. Mironneau, “Activation of calcium sparks by angiotensin II in vascular myocytes, ” Biochem.Biophys.Res.Comm., 222, 809–815(1996).

    Google Scholar 

  23. O. Bayguinov, B. Hagen, A. D. Bonev, et al., “Intracellular calcium events activated by ATP in murine colonic myocytes, ” Am.J.Physiol., 279, C126–C135 (2000).

    Google Scholar 

  24. G. P. Sergeant, M. A. Hollywood, K. D. McCloskey, et al., “Role of IP3 in modulation of spontaneous activity in pacemaker cells of rabbit urethra, ” Am.J.Physiol., 280, C1349–C1356 (2001).

    Google Scholar 

  25. Y. Imaizumi, Y. Torii, Y. Ohi, et al., “Ca2+ images and K+ current during depolarization in smooth muscle cells of the guinea pig vas deferens and urinary bladder, ” J.Physiol., 510, 705–719(1998).

    Google Scholar 

  26. J. Mironneau, F. Coussin, J. L. Morel, et al., “Calcium signalling through nucleotide receptor P2X1 in rat portal vein myocytes, ” J.Physiol., 536, 339–350(2001).

    Google Scholar 

  27. Y.Ohi, H. Yamamura, N. Nagano, et al., “Local Ca2+ transients and distribution of BK channels and ryanodine receptors in smooth muscle cells of guinea pig vas deferens and urinary bladder, ” J.Physiol., 534, 313–326 (2001).

    Google Scholar 

  28. S. A. Prestwich and T. B. Bolton, “Inhibition of muscarinic receptor-induced inositol phospholipid hydrolysis by caffeine, β-adrenoceptors and protein kinase C in intestinal smooth muscle, ” Br.J.Pharmacol., 114, 602–611(1995).

    Google Scholar 

  29. D. V. Gordienko, A. V. Zholos, and T. B. Bolton, “Membrane ion channels as physiological targets for local Ca2+ signalling, ” J.Microscopy, 196, 305–316(1998).

    Google Scholar 

  30. F. X. Boittin, N. Macrez, G. Halet, and J. Mironneau, “Norepinephrine-induced Ca2+ waves depend on InsP3 and ryanodine receptor activation in vascular myocytes, ” Am. J.Physiol., 277, C139–C151 (1999).

    Google Scholar 

  31. F. X. Boittin, F. Coussin, N. Macrez, et al., “Inositol 1,4,5–trisphosphate-and ryanodine-sensitive Ca2+ release channel-dependent Ca2+ signalling in rat portal vein myocytes, ” Cell Calcium, 23, 303–311(1998).

    Google Scholar 

  32. D. V. Gordienko and T. B. Bolton, “Crosstalk between ryanodine receptors and IP3 receptors as a factor shaping spontaneous Ca2+-release events in rabbit portal vein myocytes, ” J.Physiol., 542, 743–762 (2002).

    Google Scholar 

  33. J. Keizer, G. D. Smith, S. Ponce-Dawson, and J. E. Pearson, “Saltatory propagation of Ca2+ waves by Ca2+ sparks, ” Biophys.J., 75, 595–600(1998).

    Google Scholar 

  34. P. Lipp and E. Niggli, “Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in guinea-pig cardiac myocytes, ” J.Physiol., 508, 801–809(1998).

    Google Scholar 

  35. D. Linnekin, “Early signalling pathways activated by C-kit in hematopoietic cells, ” Int.J.Biochem., 31, 1053–1074(1999).

    Google Scholar 

  36. L. K. Ashman, “The biology of stem cell factor and its receptor C-kit, ” Int.J.Biochem., 31, 1037–1051(1999).

    Google Scholar 

  37. T. Yamazawa and M. Iino, “Simultaneous imaging of Ca2+ signals in interstitial cells of Cajal and longitudinal smooth muscle cells during rhythmic activity in mouse ileum, ” J.Physiol., 538, 823–835(2002).

    Google Scholar 

  38. K. M. Sanders, T. Ordog, S. D. Koh, et al., “Development and plasticity of interstitial cells of Cajal, ” Neurogastroenterol. Mot., 11, 311–338(1999).

    Google Scholar 

  39. S. Torihashi, K. Nishi, Y. Tokutomi, et al., “Blockade of Kit signalling induces transdifferentiation of interstitial cells of Cajal to a smooth muscle phenotype, ” Gastroenterology, 117, 140–148(1999).

    Google Scholar 

  40. M. J. Drake, P. Hedlund, K-E. Andersson, et al., “Morphology, phenotype and ultrastructure of fi broblastic cells from normal and neuropathic human detrusor: absence of myofi-broblast characteristics, ” J.Urol., 169, 1573–1576(2003).

    Google Scholar 

  41. A. Zalewski, Y. Shi, and A. G. Johnson, “Diverse origin of intimal cells. Smooth muscle cells, myofibroblasts and beyond?” Circ.Res., 91, 652–655(2002).

    Google Scholar 

  42. M. S. Fassone-Pellegrini, D. Pantalone, and C. Cortesini, “An ultrastructural study of the interstitial cells of Cajal of the human stomach, ” J.Submicroscopic Cytol.Path., 21, 439–460(1989).

    Google Scholar 

  43. S. P. Parsons and T. B. Bolton, “Calcium signalling and morphology of two cell types from the smooth muscle layers of the guinea pig gastric fundus, ” Biophys.J., 82 (1, Part 2), 421a (2002).

    Google Scholar 

  44. A. Epperson, W. J. Hatton, B. Callaghan, et al., “Molecular markers expressed in cultured and freshly isolated interstitial cells of Cajal, ” Am.J.Physiol., 279, C529–C539 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolton, T.B., Gordienko, D.V., Pucovsky, V. et al. Calcium Events in Smooth Muscles and Their Associated Cells. Neurophysiology 35, 155–160 (2003). https://doi.org/10.1023/B:NEPH.0000008774.63763.ff

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NEPH.0000008774.63763.ff

Navigation