Skip to main content
Log in

The use of peptide arrays for the characterization of monospecific antibody repertoires from polyclonal sera of psychiatric patients suspected of infection by Borna Disease Virus

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Borna Disease Virus (BDV) is suspected to infect humans and to be associated with psychiatric disorders. To this date, BDV-reactive antibodies provide the only reliable markers to diagnose human BDV infection. Their diagnostic value, however, was recently questioned by the observation that these antibodies recognize BDV antigen with only low avidity, a typical feature of cross-reacting antibodies. This raised the possibility that the human BDV-reactive antibodies were triggered by other pathogens than BDV. The recent establishment of a peptide array-based screening test allowed the further characterization of these antibodies. It revealed the presence of small amounts of BDV-reactive antibodies in crude human sera that specifically recognized various epitopes of three major BDV proteins. Most importantly, the purified epitope-specific antibodies were shown to bind to BDV antigen with high avidity when assayed by conventional immunofluorescence assay (IFA) or by Western blot. These results are compatible with the view that the presence of BDV-reactive antibodies in human sera reflects an infection with BDV, although the poor affinity maturation remains unexplained. Furthermore, it demonstrates that peptide array-based screening tests are a reliable system for identifying monospecific antibodiesfrom human polyclonal sera with high specificity and sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reineke, U., Ivascu, C., Schlief, M. et al., Identification of distinct antibody epitopes and mimotopes from a peptide array of 5520 randomly generated sequences, J. Immunol. Methods, 267 (2002) 37-51.

    PubMed  Google Scholar 

  2. Frank, R., High-density synthetic peptide microarrays: Emerging tools for functional genomics and proteomics, Comb. Chem. High Throughput Screen, 5 (2002) 429-440.

    PubMed  Google Scholar 

  3. Reineke, U., Volkmer-Engert, R. and Schneider-Mergener, J.,Applications of peptide arrays prepared by the SPOT-technology, Curr.Opin. Biotechnol., 12 (2001) 59-64.

    PubMed  Google Scholar 

  4. Valle, M., Munoz, M., Kremer, L. et al., Selection of antibody probes to correlate protein sequence domains with their structural distribution, Protein Sci., 8 (1999) 883-889.

    PubMed  Google Scholar 

  5. Billich, C., Sauder, C., Frank. R. et al., High-avidity human serum antibodies recognizing linear epitopes of Borna disease virus proteins, Biol. Psychiatry, 51 (2002) 979-987.

    PubMed  Google Scholar 

  6. Billich, C., Charakterisierung von Borna Disease Virus-spezifischen Antikörpern in Human und Tierseren. Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Albert-Ludwigs-Universität Freiburg, 2002.

    Google Scholar 

  7. Staeheli. P., Sauder, C., Hausmann, J., Ehrensperger, F. and Schwemmle, M., Epidemiology of Borna disease virus, J.Gen.Virol., 81 (2000) 2123-2135.

    PubMed  Google Scholar 

  8. Schneemann, A., Schneider, P. A., Lamb, R. A. and Lipkin, W. I., The remarkable coding strategy of Borna disease virus: A new member of the nonsegmented negative strand RNA viruses, Virology, 210 (1995) 1-8.

    PubMed  Google Scholar 

  9. Tomonaga, K., Kobayashi, T., Lee, B. J., Watanabe, M., Kamitani, W. and Ikuta, K., Identification of alternative splicing and negative splicing activity of a nonsegmented negative-strand RNA virus, Borna disease virus. Proc. Natl. Acad. Sci. USA, 97 (2000) 12788-12793.

    PubMed  Google Scholar 

  10. Ludwig, H., Bode, L. and Gosztonyi, G., Borna disease: A persistent disease of the central nervous system, Progr.Medical Virol., 35 (1988) 107-151.

    Google Scholar 

  11. Schneider, P., Hatalski, C. G., Lewis, A. J. and Lipkin, W. I., Biochemical and functional analysis of the Borna disease virus glycoprotein, J. Virol., 71 (1997) 331-336.

    PubMed  Google Scholar 

  12. Wehner, T., Ruppert, A., Herden, C., Frese, K., Becht, H. and Richt, J. A., Detection of a novel Borna disease virus encoded 10 kilodalton protein in infected cells and tissues, J. Gen. Virol., 8 (1997) 2459-2466.

    Google Scholar 

  13. Walker, M. P., Jordan, I., Briese, T., Fischer, N. and Lipkin, W. I., Expression and characterization of the Borna disease virus polymerase, J. Virol., 74 (2000) 4425-4428.

    PubMed  Google Scholar 

  14. Schwemmle, M., Borna disease virus infection in psychiatric patients: Are we on the right track? Lancet Infect. Dis., 1 (2001) 46-52.

    PubMed  Google Scholar 

  15. Carbone, K. M., Borna disease virus and human disease, Clin. Microbiol. Rev., 14 (2001) 513-527.

    PubMed  Google Scholar 

  16. Hornig, M., Briese, T. and Lipkin, W. I., Bornavirus tropism and targeted pathogenesis: Virus-host interactions in a neurodevelopmental model, Adv. Virus Res., 56 (2001) 557-582.

    PubMed  Google Scholar 

  17. Richt, J. A. and Rott, R., Borna disease virus: A mystery as an emerging zoonotic pathogen, Vet. J., 161 (2001) 24-40.

    PubMed  Google Scholar 

  18. Rott, R., Herzog, S., Fleischer, B. et al., Detection of serum antibodies to Borna disease virus in patients with psychiatric disorders, Science, 228 (1985) 755-756.

    PubMed  Google Scholar 

  19. Jordan, I., Lipkin, W. I., Borna disease virus, Rev. Med. Virol, 11 (2001) 37-57.

    PubMed  Google Scholar 

  20. Lieb, K. and Staeheli, P., Borna disease virus-Does it infect humans and cause psychiatric disorders? J. Clin. Virol., 21 (2001) 119-127.

    PubMed  Google Scholar 

  21. Lieb, K., Hallensleben, W., Czygan, M., Stitz, L. and Staeheli, P., No Borna disease virus-specific RNA detected in blood from psychiatric patients in different regions of Germany. The Bornavirus Study Group, Lancet, 350 (1997) 1002.

    Google Scholar 

  22. Schwemmle, M., Jehle, C., Formella, S. and Staeheli, P., Sequence similarities between human bornavirus isolates and laboratory strains question human origin, Lancet, 354 (1999) 1973-1974.

    PubMed  Google Scholar 

  23. Formella, S., Jehle, C., Sauder, C., Staeheli, P. and Schwemmle, M., Sequence variability of Borna disease virus: Resistance to superinfection may contribute to high genome stability in persistently infected cells, J. Virol., 74 (2000) 7878-7883.

    PubMed  Google Scholar 

  24. Allmang, U., Hofer, M., Herzog, S., Bechter, K. and Staeheli, P., Low avidity of human serum antibodies for Borna disease virus antigens questions their diagnostic value, Mol. Psychiatry, 6 (2001) 329-333.

    PubMed  Google Scholar 

  25. Gutierrez, J. and Maroto, C., Are IgG antibody avidity assays useful in the diagnosis of infectious diseases? A review, Microbios, 87 (1996) 113-121.

    PubMed  Google Scholar 

  26. Lehtonen, O. P. and Meurman, O. H., Avidity of IgG antibodies against mumps, parainfluenza 2 and Newcastle disease viruses after mumps infection, J. Virol. Methods, 14 (1986) 1-7.

    PubMed  Google Scholar 

  27. Schupbach, J., Baumgartner, A. and Tomasik, Z., HTLV-1 in Switzerland: Low prevalence of specific antibodies in HIV risk groups, high prevalence of cross-reactive antibodies in normal blood donors, Int. J. Cancer, 42 (1988) 857-862.

    PubMed  Google Scholar 

  28. Frank, R. and Overwin, H., SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes, Methods Mol. Biol., 66 (1996) 149-169.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwemmle, M., Billich, C. The use of peptide arrays for the characterization of monospecific antibody repertoires from polyclonal sera of psychiatric patients suspected of infection by Borna Disease Virus. Mol Divers 8, 247–250 (2004). https://doi.org/10.1023/B:MODI.0000036244.57859.76

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000036244.57859.76

Navigation