Skip to main content
Log in

Comparison of Mechanical Properties and Effects in Micro- and Nanocomposites with Carbon Fillers (Carbon Microfibers, Graphite Microwhiskers, and Carbon Nanotubes)

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

The mechanical properties and effects in fibrous composite materials are compared. The materials are based on the same matrix (EPON-828 epoxy resin) and differ in the type of fibers: Thornel-300 carbon microfibers, graphite microwhiskers, carbon zigzag nanotubes, and carbon chiral nanotubes. Two material models are considered: a model of elastic medium (macrolevel model) and a model of elastic mixture (micro-nanolevel model). Mechanical constants of 40 materials (4 types + 10 modifications) are calculated and compared. The theoretical ultimate compression strength along the fibers is discussed. The effects accompanying the propagation of longitudinal waves in the fiber direction are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. N. Guz' and Ya. Ya. Rushchitskii, “Nanomaterials. Mechanics of nanomaterials,” Prikl. Mekh., 39,No. 11, 36–69 (2003).

    Google Scholar 

  2. G. Lubin (ed.), Handbook of Composites, Van Nostrand Reinhold Company, New York (1982).

    Google Scholar 

  3. H. S. Katz and J. V. Milewski (eds.), Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold Company, New York (1978).

    Google Scholar 

  4. N. Wilson, K. Kannangara, G. Smith, M. Simmons, and B. Raguse, Nanotechnology. Basic Science and Emerging Technologies, Chapman & Hall, CRC, Boca Raton-London (2002).

    Google Scholar 

  5. P. J. F. Harris (ed.), Carbon Nanotubes and Related Structures, New Materials for the Twenty-First Century, Cambridge University Press, Cambridge (2000).

    Google Scholar 

  6. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (eds.), Carbon Nanotubes, Synthesis, Structure, Properties, and Applications, Springer-Verlag Press, Berlin (2001).

    Google Scholar 

  7. K. Lau, H. L. Li, D. S. Lim, and D. Hui, “Recent research and development on nanotube/polymer composites,” Annals Eur. Acad. Sci., 1,No. 1, 318–333 (2003).

    Google Scholar 

  8. H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, San Diego (2000).

    Google Scholar 

  9. L. J. Broutman and R. H. Krock (eds.), Composite Materials. In 8 Vols., Academic Press, New York (1974).

    Google Scholar 

  10. E. Dieulesaint et D. Royer, Ondes Elastiques dans les Solides. Aplication au Traitement du Signal, Masson et Cie, Paris (1974).

    Google Scholar 

  11. Ya. Ya. Rushchitskii and S. I. Tsurpal, Waves in Materials with Microstructure [in Russian], S. P. Timoshenko Inst. Mekh., Kiev (1998).

    Google Scholar 

  12. A. N. Guz' (ed.), Composite Mechanics. In 12 Vols. [in Russian], Naukova Dumka, Kiev (Vols. 1–4), “ASK” (Vols. 5–12) (1993–2003).

    Google Scholar 

  13. I. N. Frantsevich and D. M. Karpinos (eds.), Composite Materials of Fibrous Structure [in Russian], Naukova Dumka, Kiev (1970).

    Google Scholar 

  14. A. N. Guz', Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  15. A. N. Guz', Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin (1999).

    Google Scholar 

  16. A. N. Guz', “Inner instability of composites under various conditions of layer contact,” in: I. Yu. Babich (ed.), Stability of Structural Elements. Vol. 10, Ch. 6 [in Russian], (???), pp. 45–74.

  17. A. Bedford, G. S. Drumheller, and H. J. Sutherland, “On modeling the dynamics of composite materials,” in: S. Nemat-Nasser, Mechanics Today. Vol. 3, Pergamon Press, New York (1976), pp. 1–54.

    Google Scholar 

  18. A. Bedford and G. S. Drumheller, “Theories of immiscible and structured mixtures,” Int. J. Eng. Sci., 21,No. 8, 863–960 (1983).

    Google Scholar 

  19. Ya. Ya. Rushchitskii, Elements of the Theory of Mixture [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  20. Ya. Ya. Rushchitskii, “Nonlinear waves in solid mixtures (Review),” Prilk. Mekh., 33,No. 1, 3–38 (1997).

    Google Scholar 

  21. Ya. Ya. Rushchitskii, “Development of the microstructural theory of biphase mixtures with reference to composite materials,” Prikl. Mekh., 36,No. 5, 33–64 (2000).

    Google Scholar 

  22. J. J. Rushchitsky, “Interaction of waves in solid mixtures,” Appl. Mech. Rev., 52,No. 2, 35–74 (1999).

    Google Scholar 

  23. C. Cattani and J. J. Rushchitsky, “Cubically nonlinear elastic waves: wave equations and methods of analysis,” Int. Appl. Mech., 39,No. 10, 1286–1318 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz', I.A., Rushchitskii, Y.Y. Comparison of Mechanical Properties and Effects in Micro- and Nanocomposites with Carbon Fillers (Carbon Microfibers, Graphite Microwhiskers, and Carbon Nanotubes). Mechanics of Composite Materials 40, 179–190 (2004). https://doi.org/10.1023/B:MOCM.0000033261.29410.c1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MOCM.0000033261.29410.c1

Navigation