Skip to main content
Log in

Thermal decomposition of humboldtine: A high resolution thermogravimetric and hot stage Raman spectroscopic study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Evidence for the existence of primitive life forms such as lichens and fungi can be based upon the formation of oxalates. These oxalates form as a film like deposit on rocks and other host matrices. Humboldtine as the natural iron(II) oxalate mineral is a classic example. Thermogravimetry coupled to evolved gas mass spectrometry shows dehydration takes place in two steps at 130 and 141°C. Loss of the oxalate as carbon dioxide occurs at 312 and 332°C. Dehydration is readily followed by Raman microscopy in combination with a thermal stage and is observed by the loss of intensity of the OH stretching vibration at 3318 cm-1. The application of infrared emission spectroscopy supports the results of the TG-MS. Three Raman bands are observed at 1470, 1465 and 1432 cm-1 attributed the CO symmetric stretching mode. The observation of the three bands supports the concept of multiple iron(II) oxalate phases. The significance of this work rests with the ability of Raman spectroscopy to identify iron(II) oxalate which often occurs as a film on a host rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. J. Arnott and M. A. Webb, Scanning Electron Microsc., (1983) 1747.

  2. J. E. Chisholm, G. C. Jones and O. W. Purvis, Mineralogical Magazine, 51 (1987) 715.

    Google Scholar 

  3. A. Fey-Wyssling, Am. J. Bot., 68 (1981) 130.

    Google Scholar 

  4. G. M. Gadd, Mineralogical Soc. Ser., 9 (2000) 57.

    Google Scholar 

  5. T. Wadsten and R. Moberg, Lichenologist, 17 (1985) 239.

    Google Scholar 

  6. E. Manasse, Rend. Accad. Lincei, 19 (1911) 138.

    Google Scholar 

  7. F. Mazzi and C. Garavelli, Periodico mineral, 26 (1957) 269.

    Google Scholar 

  8. F. Mazzi and C. L. Garavelli, Periodico mineral, 28 (1959) 243.

    Google Scholar 

  9. S. Caric, Bull. Soc. Franc. Mineral Crist., 82 (1959) 50.

    Google Scholar 

  10. H. Pezerat, J. Dubernat and J. P. Lagier, Comp. Rend. des Siences de l'Acad. des Sci., Ser. C: Sciences Chimiques, 288 (1968) 1357.

    Google Scholar 

  11. J. Dubernat and H. Pezerat, J. Appl. Cryst., 7 (1974) 387.

    Google Scholar 

  12. P. V. Monje and E. J. Baran, Plant Phys., 128 (2002) 707.

    Google Scholar 

  13. J. P. Pestaner, F. G. Mullick, F. B. Johnson and J. A. Centeno, Arch. Pathology and Lab. Med., 120 (1996) 537.

    Google Scholar 

  14. J. Dubernat and H. Pezerat, J. Appl. Cryst., 7 (1974) 387.

    Google Scholar 

  15. H. Pezereat, J. Dubernat and J. P. Lagier, C. R. Acad. Sci., Paris, Ser. C, 288 (1968) 1357.

    Google Scholar 

  16. M. J. Wilson and P. Bayliss, Mineral. Magazine, 51 (1987) 327.

    Google Scholar 

  17. R. M. Clarke and I. R. Williams, Mineral. Magazine, 50 (1986) 295.

    Google Scholar 

  18. K. Rezek, J. Sevcu, S. Civis and J. Novotny, Casopis pro Mineralogii a Geologii, 33 (1988) 419.

    Google Scholar 

  19. H. Winchell and R. J. Benoit, Am. Mineral., 36 (1951) 590.

    Google Scholar 

  20. A. Piterans, D. Indriksone, A. Spricis and A. Actins, Proc. Latvian Acad. of Sci., section. B, Natural, Exact and Applied Sciences, 51 (1997) 254.

    Google Scholar 

  21. M. del Monte and C. Sabbioni, Environ. Sci. Technol., 17 (1983) 518.

    Google Scholar 

  22. M. del Monte and C. Sabbioni, Sci. Total Environm., 50 (1986) 165.

    Google Scholar 

  23. J. Girbal, J. L. Prada, R. Rocabayera and M. Argemi, Radiocarbon, 43 (2001) 637.

    Google Scholar 

  24. S. Moore, M. J. Beazley, M. R. McCallum and J. Russ, Preprints of Extended Abstracts presented at the ACS National Meeting, American Chemical Society, Division of Environm. Chemistry, 40 (2000) 4.

    Google Scholar 

  25. I. Lamprecht, A. Reller, R. Riesen and H. G. Wiedemann, J. Therm. Anal. Cal., 49 (1997) 1601.

    Google Scholar 

  26. R. Alaimo and G. Montana, Neues Jahrbuch fuer Mineralogie, Abhandlungen, 165 (1993) 143.

    Google Scholar 

  27. G. Alessandrini, L. Toniolo, F. Cariati, G. Daminelli, S. Polesello, A. Pozzi and A. M. Salvi, Studies in Conservation, 41 (1996) 193.

    Google Scholar 

  28. H. Moenke, Chem. Erde, 21 (1961) 239.

    Google Scholar 

  29. M. Daudon, M. F. Protat, R. J. Reveillaud and H. Jaeschke-Boyer, Kidney Int., 23 (1983) 842.

    Google Scholar 

  30. C. Paluszkiewicz, M. Galka, W. Kwiatek, A. Parczewski and S. Walas, Biospectroscopy, 3 (1997) 403.

    Google Scholar 

  31. R. I. Bickley, H. G. M. Edwards and S. J. Rose, J. Molecular Structure, 243 (1991) 341.

    Google Scholar 

  32. H. Chang and P. J. Huang, Anal. Chem., 69 (1997) 1485.

    Google Scholar 

  33. D. Duval and R. A. Condrate, Sr., Applied Spectroscopy, 42 (1988) 701.

    Google Scholar 

  34. H. G. M. Edwards, D. W. Farwell, R. Jenkins and M. R. D. Seaward, J. Raman Spectroscopy, 23 (1992) 185.

    Google Scholar 

  35. I. I. Kondilenko, P. A. Korotkov, N. G. Golubeva, V. A. Klimenko and A. I. Pisanskii, Optika i Spektroskopiya, 45 (1978) 819.

    Google Scholar 

  36. O. I. Kondratov, E. A. Nikonenko, I. I. Olikov and L. N. Margolin, Zh. Neorg. Khim., 30 (1985) 2579.

    Google Scholar 

  37. T. A. Shippey, J. Molecular Structure, 63 (1980) 157.

    Google Scholar 

  38. R. L. Frost, Z. Ding, J. T. Kloprogge and W. N. Martens, Thermochim. Acta, 390 (2002) 133.

    Google Scholar 

  39. R. L. Frost, Z. Ding, W. N. Martens and T. E. Johnson, Thermochim. Acta, 398 (2003) 167.

    Google Scholar 

  40. R. L. Frost, J. Kristóf, E. Horváth and J. T. Kloprogge, J. Raman Spectrosc., 32 (2001) 873.

    Google Scholar 

  41. J. Praharaj, S. K. Pati, S. C. Moharana and D. Bhatta, J. Teaching and Res. Chem., 8 (2001) 4.

    Google Scholar 

  42. A. V. Shkarin, I. P. Suzdalev, B. M. Kadenatsi and G. M. Zhabrova, Khim. Vys. Energ., 2 (1968) 77.

    Google Scholar 

  43. B. S. Randhawa, Thermochim. Acta, 254 (1995) 381.

    Google Scholar 

  44. V. Berbenni, A. Marini, G. Bruni and R. Riccardi, Thermochim. Acta, 346 (2000) 115.

    Google Scholar 

  45. A. Coetzee, D. J. Eve and M. E. Brown, J. Thermal Anal., 39 (1993) 947.

    Google Scholar 

  46. S. Carlino and M. J. Hudson, Solid State Ionics, 110 (1998) 153.

    Google Scholar 

  47. E. Horváth, J. Kristóf, R. L. Frost, A. Redey, V. Vágvölgyi and T. Cseh, J. Therm. Anal. Cal., 71 (2003) 707.

    Google Scholar 

  48. J. Kristóf, R. L. Frost, J. T. Kloprogge, E. Horváth and E. Makó, J. Therm. Anal. Cal., 69 (2002) 77.

    Google Scholar 

  49. J. Kristóf, R. L. Frost, W. N. Martens and E. Horváth, Langmuir, 18 (2002) 1244.

    Google Scholar 

  50. J. Kristóf, E. Horváth, R. L. Frost and J. T. Kloprogge, J. Therm. Anal. Cal., 63 (2001) 279.

    Google Scholar 

  51. H. G. M. Edwards and P. H. Hardman, J. Molecular Structure, 273 (1992) 73.

    Google Scholar 

  52. H. G. M. Edwards and I. R. Lewis, Spectrochim. Acta, Part A.: Molecular and Biomolecular Spectroscopy, 50A (1994) 1891.

    Google Scholar 

  53. H. G. M. Edwards, E. M. Newton and J. Russ, J. Molecular Structure, 550–551 (2000) 245.

    Google Scholar 

  54. H. G. M. Edwards, N. C. Russell, M. R. D. Seaward and D. Slarke, Spectrochim. Acta, Part A.: Molecular and Biomolecular Spectroscopy, 51A (1995) 2091.

    Google Scholar 

  55. H. G. M. Edwards, N. C. Russell and M. R. D. Seaward, Spectrochim. Acta, Part A.: Molecular and Biomolecular Spectroscopy, 53A (1997) 99.

    Google Scholar 

  56. E. Horváth, J. Kristóf, R. L. Frost, A. Redey, V. Vágvölgyi and T. Cseh, Hydrazine-hydrate intercalated halloysite under controlled-rate thermal analysis conditions. J. Therm. Anal. Cal., 71 (2003) 707.

    Google Scholar 

  57. R. L. Frost, Z. Ding and H. D. Ruan, Thermal analysis of goethite. Relevance to Australian indigenous art. J. Therm. Anal. Cal., 71 (2003) 783.

    Google Scholar 

  58. R. L. Frost, W. Martens, Z. Ding and J. T. Kloprogge, DSC and high-resolution TG of synthesized hydrotalcites of Mg and Zn. J. Therm. Anal. Cal., 71 (2003) 429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, R.L., Weier, M.L. Thermal decomposition of humboldtine: A high resolution thermogravimetric and hot stage Raman spectroscopic study. Journal of Thermal Analysis and Calorimetry 75, 277–291 (2004). https://doi.org/10.1023/B:JTAN.0000017349.31035.dd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000017349.31035.dd

Navigation