Skip to main content
Log in

Localization in Infinite Billiards: A Comparison Between Quantum and Classical Ergodicity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Consider the non-compact billiard in the first quandrant bounded by the positive x-semiaxis, the positive y-semiaxis and the graph of f(x)=(x+1)α, α∈(1,2]. Although the Schnirelman Theorem holds, the quantum average of the position xis finite on any eigenstate, while classical ergodicity entails that the classical time average of xis unbounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Bourgain and E. Lindenstrauss, Entropy of quantum limits, Comm. Math. Phys. 233:153–171 (2003).

    Google Scholar 

  2. Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102:497–502 (1985).

    Google Scholar 

  3. E. B. Davies, Trace properties of the Dirichlet Laplacian, Math. Zeit. 188:245–251 (1985).

    Google Scholar 

  4. E. B. Davies and B. Simon, Spectral properties of the Neumann Laplacian of horns, Geom. Funct. Anal. 2:105–117 (1992).

    Google Scholar 

  5. M. Degli Esposti, S. Graffi, and S. Isola, Stochastic properties of the quantum toral automorphisms at the classical limit, Comm. Math. Phys. 167:471–507 (1995).

    Google Scholar 

  6. B. Helffer, A. Martinez, and D. Robert, Ergodicité et limite semi-classique, Comm. Math. Phys. 109:313–326 (1987).

    Google Scholar 

  7. M. Lenci, Escape orbits for non-compact flat billiards, Chaos 6:428–431 (1996).

    Google Scholar 

  8. M. Lenci, Semidispersing billiards with an infinite cusp. I, Comm. Math. Phys. 230:133–180 (2002).

    Google Scholar 

  9. M. Lenci, Semidispersing billiards with an infinite cusp. II, Chaos 13:105–111 (2003).

    Google Scholar 

  10. E. Lindenstrauss, On quantum unique ergodicity for г\ℍх ℍ, Internat. Math. Res. Notices 17:913–933 (2001).

    Google Scholar 

  11. W. Luo, Equidistribution of Hecke eigenforms on the modular surface, Proc. Amer. Math. Soc. 131:21–27 (2003).

    Google Scholar 

  12. W. Luo and P. Sarnak, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math. 56:874–891 (2003).

    Google Scholar 

  13. Y. N. Petridis and P. Sarnak, Quantum unique ergodicity for SL 2 (O)\H 3and estimates for L-functions, J. Evol. Equ. 1:277–290 (2001).

    Google Scholar 

  14. D. Robert, Comportement asymptotique des valeurs propres d'opérateurs du type Schrödinger a` potentiel ''dégénéré,'' J. Math. Pures Appl. 61:275–300 (1982).

    Google Scholar 

  15. V. I. Schnirelman, Ergodic properties of eigenfunctions, Usp. Math. Nauk 29:181–182 (1974).

    Google Scholar 

  16. B. Simon, Nonclassical eigenvalue asymptotics, J. Funct. Anal. 53:84–92 (1983).

    Google Scholar 

  17. Y. G. Sinai, Dynamical systems with elastic reflections, Russ. Math. Surveys 25:137–189 (1970).

    Google Scholar 

  18. Ya. G. Sinai and N. I. Chernov, Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls, Russ. Math. Surveys 42:181–207 (1987).

    Google Scholar 

  19. H. Tamura, The asymptotic distribution of eigenvalues of the Laplace operator in an unbounded domain, Nogoya Math. J. 60:7–33 (1976).

    Google Scholar 

  20. M. van den Berg, On the spectrum of the Dirichlet Laplacian for horn-shaped regions in Rnwith infinite volume, J. Funct. Anal. 58:150–156 (1984).

    Google Scholar 

  21. S. Wolpert, Semiclassical limits for the hyperbolic plane, Duke Math. J. 108:449–509 (2001).

    Google Scholar 

  22. S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55:919–941 (1987).

    Google Scholar 

  23. S. Zelditch, Mean Lindelöf hypothesis and equidistribution of cusp forms and Eisenstein series, J. Funct. Anal. 97:1–49 (1991).

    Google Scholar 

  24. S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys. 175:673–682 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graffi, S., Lenci, M. Localization in Infinite Billiards: A Comparison Between Quantum and Classical Ergodicity. Journal of Statistical Physics 116, 821–830 (2004). https://doi.org/10.1023/B:JOSS.0000037218.05161.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000037218.05161.f3

Navigation