Skip to main content
Log in

A “Flat/Steep Band” Scenario in Momentum Space

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Based on chemical bonding considerations in a crystalline solid, a Hamiltonian was proposed for the “flat/steep band” scenario. This model has been studied with the first-principles method. With Hg and MgB2 as examples, we have explained the characteristics of this model and observed peak-like structure of the electron–phonon coupling constant λ(q) in q space. The strong coupling of the “flat band” electrons with phonons has been corroborated by developing a new functional Psib(Φ), through which we can quantitatively compare different electronic states in coupling to a specific phonon. In the case of MgB2 a multigap structure of the superconducting state results from our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Simon, Angew. Chem. Int. Ed. Engl. 36, 1788(1997).

    Google Scholar 

  2. S. Deng, A. Simon, and J. Köhler, Angew. Chem. Int. Ed. Engl. 37, 640(1998).

    Google Scholar 

  3. B. K. Chakraverty and C. Schlenker, J. Phys. (Paris) Collq. 37, C4-353(1976).

    Google Scholar 

  4. B. K. Chakraverty, J. Phys. (Paris) Lett. 40, L-9(1979).

    Google Scholar 

  5. S. Lakkis, C. Schlenke, B. K. Chakraverty, R. Buder, and M. Marezio, Phys. Rev. B 14, 1429(1976).

    Google Scholar 

  6. B. K. Chakraverty, J. M. Sienko, and J. Bonnerot, Phys. Rev. B 17, 3781(1978).

    Google Scholar 

  7. P. W. Anderson, Mater. Res. Bull. 8, 153(1973).

    Google Scholar 

  8. S. Robaszkiewicz, R. Micnas, and J. Ranninger, Phys. Rev. B 36, 180(1987).

    Google Scholar 

  9. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175(1957).

    Google Scholar 

  10. A. S. Alexandrov and J. Ranninger, Phys. Rev. B 24, 1164(1981).

    Google Scholar 

  11. J. Ranninger and S. Robaszkiewicz, Physica B 138, 468(1985).

    Google Scholar 

  12. J. Ranninger, R. Micnas, and S. Robaszkiewicz, Ann. Phys. (Paris) 13, 455(1988).

    Google Scholar 

  13. R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113(1990).

    Google Scholar 

  14. R. Micnas, S. Robaszkiewicz, and A. Bussmann-Holder, Phys. Rev. B 66, 104516(2002).

    Google Scholar 

  15. D. H. Lee and J. Ihm, Solid State Commun. 62, 811(1987).

    Google Scholar 

  16. V. I. Anisimov, F. Aryasetiawan, and A. I. Liechtenstein, J. Phys. C 9, 808(1997).

    Google Scholar 

  17. A. Geoges, G. Kotliar, W. Krauth, and M. J. Rosenberg, Rev. Mod. Phys. 68, 13(1996).

    Google Scholar 

  18. N. Kumar and K. P. Sinha, Phys. Rev. 174, 482(1968).

    Google Scholar 

  19. K. L. Ngai and E. J. Johnson, Phys. Rev. Lett. 29, 1607(1972).

    Google Scholar 

  20. K. L. Ngai, Phys. Rev. Lett. 32, 215(1972).

    Google Scholar 

  21. N. Kumar, Phys. Rev. B 9, 4993(1974).

    Google Scholar 

  22. A. Bussmann-Holder, A. R. Bishop, and A. Simon, Z. Phys. B 90, 183(1993).

    Google Scholar 

  23. A. Bussmann-Holder and A. R. Bishop, Z.Phys. B 86, 183(1992).

    Google Scholar 

  24. H. Suhl, T. Matthias, and L. R. Walker, Phys. Rev. Lett. 3, 552(1959).

    Google Scholar 

  25. B. T. Geilikman, R. O. Zaitsev, and V. Z. Kresin, Sov. Phys. Solid State 9, 642(1967).

    Google Scholar 

  26. W. H. Butler and P. B. Allen, in Superconductivity in d-and f-Metals, D. H. Douglass, ed. (Plenum, New York, 1976) p. 73.

    Google Scholar 

  27. F. J. Pinski, P. B. Allen, and W. Butler, Phys. Rev. B 23, 5080(1981).

    Google Scholar 

  28. A. Bussmann-Holder, L. Genzel, A. Simon, and A. R. Bishop, Z. Phys. B 91, 271(1993).

    Google Scholar 

  29. A. Bussmann-Holder, L. Genzel, A. Simon, and A. R. Bishop, Z. Phys. B 92, 149(1993).

    Google Scholar 

  30. V. A. Moskalenko, Fiz. Met. Metalloved. 8, 503(1959).

    Google Scholar 

  31. J. Kondo, Prog. Theor. Phys. 29, 1(1963).

    Google Scholar 

  32. V. Z. Kresin, J. Low Temp. Phys. 11, 519(1973).

    Google Scholar 

  33. V. Z. Kresin and S. Wolf, Physica C 169, 476(1990).

    Google Scholar 

  34. K. A. Müller and H. Keller, in Proc. NATO ASI Materials Aspects of High-Tc Superconductivity: 10 Years After the Discovery (Kluwer, Dordrecht, 1997); K. A. M uller, Phil. Mag. Lett. 82, 279 (2002).

    Google Scholar 

  35. B. K. Chakraverty, Phys. Rev. B 48, 4047(1993).

    Google Scholar 

  36. S. Deng, A. Simon, and J. Köhler, Solid State Sci. 2, 31(2000).

    Google Scholar 

  37. D. M. Newns, C. C. Tsuei, P. C. Pattnaik, and C. L. Kane, Comments Condens. Matter Phys. 15, 273(1992).

    Google Scholar 

  38. S. Deng, A. Simon, and J. Köhler, J. Phys. Chem. Solids 62, 1441(2001).

    Google Scholar 

  39. P. B. Allen, Phys. Rev. B 6, 2579(1972).

    Google Scholar 

  40. S. Deng, A. Simon, and J. Köhler, J. Supercond. 16, 477(2003).

    Google Scholar 

  41. S. Deng, A. Simon, and J. Köhler, J. Am. Chem. Soc. 124, 10712(2002).

    Google Scholar 

  42. S. Deng, A. Simon, J. Köhler, and A. Bussmann-Holder, J. Supercond. 16, 919(2003).

    Google Scholar 

  43. X. J. Zhou, T. Yoshida, A. Lanzara, P. V. Bogdanov, S. A. Kellar, K. M. Shen, W. L. Yang, F. Ronning, T. Sasagawa, T. Kakeshita, T. Noda, H. Eisaki, S. Uchida, C. T. Lin, F. Zhou, J. W. Xiong, W. X. Ti, Z. X. Zhao, A. Fujimori, Z. Hussain, and Z.-X. Shen, Nature 423, 398(2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, S., Simon, A. & Köhler, J. A “Flat/Steep Band” Scenario in Momentum Space. Journal of Superconductivity 17, 227–231 (2004). https://doi.org/10.1023/B:JOSC.0000021247.78801.78

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSC.0000021247.78801.78

Navigation