Skip to main content
Log in

Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Many important proteins contain multiple domains connected by flexible linkers. Inter-domain motion is suggested to play a key role in many processes involving molecular recognition. Heteronuclear NMR relaxation is sensitive to motions in the relevant time scales and could provide valuable information on the dynamics of multi-domain proteins. However, the standard analysis based on the separation of global tumbling and fast local motions is no longer valid for multi-domain proteins undergoing internal motions involving complete domains and that take place on the same time scale than the overall motion.

The complexity of the motions experienced even for the simplest two-domain proteins are difficult to capture with simple extensions of the classical Lipari–Szabo approach. Hydrodynamic effects are expected to dominate the motion of the individual globular domains, as well as that of the complete protein. Using Pin1 as a test case, we have simulated its motion at the microsecond time scale, at a reasonable computational expense, using Brownian Dynamic simulations on simplified models. The resulting trajectories provide insight on the interplay between global and inter-domain motion and can be analyzed using the recently published method of isotropic Reorientational Mode Dynamics which offer a way of calculating their contribution to heteronuclear relaxation rates. The analysis of trajectories computed with Pin1 models of different flexibility provides a general framework to understand the dynamics of multi-domain proteins and explains some of the observed features in the relaxation rate profile of free Pin1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M.P. and Tildesley, D.J. (1990) Computer Simulations of Liquids, Oxford, Claredon Press.

    Google Scholar 

  • Antosiewicz, J. and McCammon, J.A. (1995) Biophys. J., 69, 57–65.

    Article  ADS  Google Scholar 

  • Antosiewicz, J., Briggs, J.M. and McCammon, J.A. (1996) Eur. Biophys. J., 24, 137–141.

    Article  Google Scholar 

  • Avigan, M.I., Stober, B. and Levens, D.A. (1990) J. Biol. Chem., 265, 18538–18545.

    Google Scholar 

  • Baber, J., Szabo, A. and Tjandra, N. (2001) J. Am. Chem. Soc., 123, 3953–3959.

    Article  Google Scholar 

  • Bernadó, P., Åkerud, T., García de la Torre, J., Akke, M. and Pons, M. (2003) J. Am. Chem. Soc. 125, 916–923.

    Article  Google Scholar 

  • Bernadó, P., García de la Torre, J. and Pons, M. (2002) J. Biomol. NMR, 23, 139–150.

    Article  Google Scholar 

  • Braddock, D.T., Louis, J.M., Baber, J.L., Levens, D. and Clore, M.G. (2002) Nature, 415, 1051–1056.

    Article  ADS  Google Scholar 

  • Brune, D. and Kim, S. (1994) Proc. Natl. Acad. Sci. USA, 91, 2930–2934.

    Article  ADS  Google Scholar 

  • Brüschweiler, R., Liao, X. and Wright, P. (1995) Science, 268, 886–889.

    Article  ADS  Google Scholar 

  • Burd, C.G. and Dreyfuss, G. (1994) Science, 265, 615–621.

    Article  ADS  Google Scholar 

  • Campbell, I.D. and Downing, A.K. (1998) Nat. Struct. Biol., 5, 496–499.

    Article  Google Scholar 

  • Carrasco, B. and García de la Torre, J. (1999a) Biophys. J., 75, 3044–3057.

    Article  Google Scholar 

  • Carrasco, B. and García de la Torre, J. (1999b) J. Chem. Phys., 110, 4817–4826.

    Article  ADS  Google Scholar 

  • Chang, S.-L. and Tjandra, N. (2001) J. Am. Chem. Soc., 123, 11484–11485.

    Article  Google Scholar 

  • Chou, J.J., Li, S., Klee, C.B. and Bax, A. (2001) Nat. Struct. Biol., 8, 990–997.

    Article  Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990) J. Am. Chem. Soc., 112, 4989–4991.

    Article  Google Scholar 

  • Dagget, V. (2000) Curr. Opin. Struct. Biol., 10, 160–164.

    Article  Google Scholar 

  • Ermak, D.L. and MacCammon, J.A. (1978) J. Chem. Phys., 69, 1352–1360.

    Article  ADS  Google Scholar 

  • Fernandes, M.X., Bernadó, P., Pons, M. and García de la Torre, J. (2001) J. Am. Chem. Soc., 123, 12037–12047.

    Article  Google Scholar 

  • Fischer, M.W.F., Losonczi, J.A., Weaver, J.L. and Prestegard, J.H. (1999) Biochemistry, 38, 9013–9022.

    Article  Google Scholar 

  • Fushman, D., Xu, R. and Cowburn, D. (1999) Biochemistry, 38, 10225–10230.

    Article  Google Scholar 

  • García Bernal, J.M. and García de la Torre, J. (1980) Biopolymers, 19, 751–766.

    Article  Google Scholar 

  • García de la Torre, J. and Bloomfield, V.A. (1981) Q. Rev. Biophys., 14, 81–139.

    Article  Google Scholar 

  • García de la Torre, J., Huertas, M.L. and Carrasco, B. (2000) J. Magn. Reson., 147, 138–147.

    Article  ADS  Google Scholar 

  • Gerstein, M. and Krebs, W. (1998) Nucl. Acids Res., 26, 4280–4290.

    Article  Google Scholar 

  • Ikura, M., Clore, G.M., Gronenborn, A.M., Zhu, G., Klee, C.B. and Bax, A. (1992) Science, 256, 632–638.

    Article  ADS  Google Scholar 

  • Iniesta, A. and García de la Torre, J. (1990) J. Chem. Phys., 92, 2015–2018.

    Article  ADS  Google Scholar 

  • Jacobs, D.M., Saxena, K., Vogtherr, M., Bernadó, P., Pons, M. and Fiebig, K. (2003) J. Biol. Chem., 278, 26174–26182.

    Article  Google Scholar 

  • Levitt, M. (1976) J. Mol. Biol., 104, 59–107.

    Article  Google Scholar 

  • Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Article  Google Scholar 

  • Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Article  Google Scholar 

  • Lu, K.P., Liou, Y.-C. and Zhou, X.Z. (2002) Trends Cell Biol., 12, 164–172.

    Article  Google Scholar 

  • Meador, W.E., Means, A.R. and Quiocho, F.A. (1993) Science, 262, 1718–1721.

    Article  ADS  Google Scholar 

  • Peter, C., Daura, X. and van Gunsteren, W.F. (2001) J. Biomol. NMR, 20, 297–310.

    Article  Google Scholar 

  • Prompers, J.J. and Brüschweiler, R. (2001) J. Am. Chem. Soc., 123, 7305–7313.

    Article  Google Scholar 

  • Prompers, J.J. and Brüschweiler, R. (2002a) J. Am. Chem. Soc., 124, 4522–4534.

    Article  Google Scholar 

  • Prompers, J.J. and Brüshweiler, R. (2002b) Proteins, 46, 177–189.

    Article  Google Scholar 

  • Prompers, J.J., Lienin, S.F. and Brüschweiler, R. (2001) In Biocomputing: Proceedings of the 2001 Pacific Symposium, Altman, R.B., Dunker, A.K., Hunter, L., Lauderdale, K. and Klein, T.E., World Scientific, Singapore, pp. 79–88.

    Google Scholar 

  • Ranganathan, R., Lu, K.P., Hunter, T. and Noel, J.P. (1997) Cell, 89, 875–886.

    Article  Google Scholar 

  • Rotne, J. and Prager, J. (1969) J. Chem. Phys., 50, 4831–4837.

    Article  ADS  Google Scholar 

  • Sekerina, E., Rahfeld, J.U., Müller, J., Fanghänel, C.R., Fischer, G. and Bayer, P.J. (2000) Mol. Biol., 301, 1003–1017.

    Article  Google Scholar 

  • Sicheri, F. and Kuriyan, J. (1997) Curr. Opin. Struct. Biol., 7, 777–785.

    Article  Google Scholar 

  • Tjandra, N., Garrett, D.S., Gronenborn, A.M., Bax, A. and Clore, G.M. (1997) Nat. Struct. Biol., 4, 443–449.

    Article  Google Scholar 

  • Tolman, J.R., Flanagan, J.M., Kennedy, M.A. and Prestegard, J.H. (1995) Proc. Natl. Acad. Sci. USA, 92, 9279–9283.

    Article  ADS  Google Scholar 

  • Varadan, R., Walker, O., Pickart, C. and Fushman, D. (2002) J. Mol. Biol., 324, 637–647.

    Article  Google Scholar 

  • Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. and Noel, J.P. (2000) Nat. Struct. Biol., 7, 639–643.

    Article  Google Scholar 

  • Wade, R.C., Davies, M.E., Luty, B.A., Madura, J.D. and McCammon, J.A. (1993) Biophys. J., 64, 9–15.

    Article  ADS  Google Scholar 

  • Yamakawa, H. (1970) J. Chem. Phys., 53, 436–443.

    Article  ADS  Google Scholar 

  • Yuan, X., Werner, J.M., Lack, J., Knott, V., Handford, P.A., Campbell, I.D. and Downing, A.K. (2002) J. Mol. Biol, 316, 113–125.

    Article  Google Scholar 

  • Zhou, X.Z., Lu, P.-J., Wulf, G. and Lu, K.P. (1999) Cell. Mol. Life Sci., 56, 788–806.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Pons.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernadó, P., Fernandes, M.X., Jacobs, D.M. et al. Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations. J Biomol NMR 29, 21–35 (2004). https://doi.org/10.1023/B:JNMR.0000019499.60777.6e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JNMR.0000019499.60777.6e

Navigation