Skip to main content
Log in

The effect of surface treatment of hydroxyapatite on the properties of a bioactive bone cement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bioactive bone cements based on a paste–paste system for orthopaedic applications have been developed. They consist of hydroxyapatite (HA) filler particles in a methacrylate matrix comprising urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA). To improve the interface between inorganic filler and organic matrix the HA particles were subjected to two different surface treatment methods, using polyacrylic acid (PAA) and γ–methacryloxypropyltrimethoxy silane (γMPS). The aim of the present study was to determine the influence of surface treatment on the mechanical properties, namely compressive strength (CS), diametral tensile strength (DTS) and three-point flexural strength (FS) of the cements and the effect of ageing in simulated body fluid (SBF). Comparing the mechanical properties of the two cements after fabrication, the γMPS–HA cement showed higher strength values for all tests conducted (CS=185±19.6 MPa, DTS=27±2.5 MPa, FS=50.2±4.9 MPa), whereas PAA–HA containing cement had strength values around 20% lower. However, poly(acrylic acid) surface treatment was found to be more effective in improving the interface, and PAA–HA cements maintained their mechanical properties after immersion in SBF whereas γMPS–HA cement showed a reduction in strength values post ageing. From the results of this study, it is concluded that PAA treatment of the HA filler is a viable alternative to silanation with γMPS which may provide increased durability in aqueous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hennig, B. A. Blenke, H. Bromer, K. K. Deutscher, A. Gross and W. Ege, J. Biomed. Mater. Res. 13 (1979) 89.

    Google Scholar 

  2. A. Castaldini and A. Cavellini, Biomaterials 6 (1985) 55.

    Google Scholar 

  3. M. Kamimura, J. Tamura, S. Shinzato, K. Kawanabe, M. Neo, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 61 (2002) 564.

    Google Scholar 

  4. A. M. Moursi, A. V. Winnard, P. L. Winnard, J. J. Lannutti and R. R. Seghi, Biomaterials 23 (2002) 133.

    Google Scholar 

  5. M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, ibid. 22 (2001) 1739.

    Google Scholar 

  6. M. J. Dalby, L. Di Silvio, E. J. Harper and W. Bonfield, ibid. 23 (2002) 569.

    Google Scholar 

  7. W. F. Mousa, M. Kobayashi, S. Shinzato, M. Kamimura, M. Neo, S. Yoshihara and T. Nakamura, ibid. 21 (2000) 2137.

    Google Scholar 

  8. J. Raveh, H. Stich and B. Kehrer, Chirurg 53 (1982) 719.

    Google Scholar 

  9. T. Yamamuro, T. Nakamura, H. Iida, K. Kawanabe, Y. Matsuda, K. Ido, J. Tamura and Y. Senaha, Biomaterials 19 (1998) 1479.

    Google Scholar 

  10. F. L. Matthews and R. D. Rawlings, in “Composite Materials: Engineering and Science”, 2nd edn (Woodhead Publishing, Cambridge UK, 1999).

    Google Scholar 

  11. S. Deb, M. Braden and W. Bonfield, Biomaterials 16 (1995) 1095.

    Google Scholar 

  12. M. F. Mousa, M. Kobayashi, Y. Kitamura, I. A. Zeineldin and T. Nakamura, J. Biomed. Mater. Res. 47 (1999) 336.

    Google Scholar 

  13. M. Wang, S. Deb and W. Bonfield, Mater. Let. 44 (2000) 119.

    Google Scholar 

  14. A. M. P. Dupraz, J. R. Wijin, S. A. T. Meer and K. Groot, J. Biomed. Mater. Res. 30 (1996) 231.

    Google Scholar 

  15. K. J. Soderholm and P. D. Calvert, J. Mater. Sci. 18 (1983) 2957.

    Google Scholar 

  16. C.-T. Lin, S.-Y. Lee, E.-S. Keh, D.-R. Dong, H.-M. Huang and Y.-H. Shih, J. Oral Rehab. 27 (2000) 919.

    Google Scholar 

  17. Q. Liu, J. R. De Wijn and C. A. Van Blitterswijk, Biomaterials 18 (1997) 1263.

    Google Scholar 

  18. R. Fukada, Y. Yoshida, N. Nakayama, M. Okazaki, S. Inoue, H. Sano, K. Suzuki, H. Shintani and B. Van Meerbeek, ibid. 24 (2003) 1861.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Deb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roether, J.A., Deb, S. The effect of surface treatment of hydroxyapatite on the properties of a bioactive bone cement. Journal of Materials Science: Materials in Medicine 15, 413–418 (2004). https://doi.org/10.1023/B:JMSM.0000021112.51065.40

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000021112.51065.40

Keywords

Navigation