Skip to main content
Log in

Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part II: the nanotube film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon nanotube films have been grown at 750° and 900 °C by thermal chemical vapor deposition (CVD) with acetylene (C2H2) and hydrogen on silicon (0 0 2) wafers supporting preformed (Fe,Si)3O4 particles. The reduction of the (Fe,Si)3O4 particles during CVD at 750 °C was accompanied by a disintegration leading to the formation of a high density of smaller (predominantly 5–15 nm) iron silicide (α1-Fe2Si) particles that catalyzed the growth of a dense and aligned multi-wall carbon nanotube film. The tubes did not contain any inclusions apart from the catalytic particles present in the bottom part of the film, and it was concluded that the nanotubes grew via a “base-growth” mechanism. CVD at 900 °C resulted in a random growth of predominantly multi-wall carbon nanotubes. The film contained an increased number of amorphous carbon, or graphite, clusters containing particles that had been carbonized, the larger ones to cementite, θ-Fe3C. Nanotubes were observed to grow from some of these clusters. Multi-wall carbon nanotube tips contained after CVD at 900 °C encapsulated θ-Fe3C, or in a few cases α- or γ-Fe, particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Journet and P. Bernier, Appl. Phys. A 67 (1998) 1.

    Google Scholar 

  2. Ch. Laurent, E. Flahaut, A. Peigney and A. Rousse, New J. Chem. (1998) 1229.

  3. M. Jung, K. Y. Eun, J. K. Lee, Y. J. Baik, K. R. Lee and J. W. Park, Diamond Relat. Mater. 10 (2001) 1235.

    Google Scholar 

  4. O. A. Nerushev, M. Sveningsson, L. K. L. Falk and F. Rohmund, J. Mater. Chem. 11 (2001) 1122.

    Google Scholar 

  5. R. T. K. Baker, M. A. Barber, P. S. Harrwas, F. S. Feates and R. J. Waite, J. Catalysis 26 (1972) 51.

    Google Scholar 

  6. R. T. K. Baker, Carbon 27 (1989) 315.

    Google Scholar 

  7. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell and H. Dai, Science 283 (1999) 512.

    Google Scholar 

  8. Z. F. Ren, Z. P. Huang, J. W. Su, J. H. Wang, P. Bush, M. P. Siegal and P. N. Provencio, ibid. 282 (1998) 1105.

    Google Scholar 

  9. Ch. Lee, J. Park, S. Kang and J. Lee, Chem. Phys. Lett. 323 (2000) 554.

    Google Scholar 

  10. M. Kusunoki, T. Suzuki, T. Hirayama N. Shibata and K. Kaneko, Appl. Phys. Lett. 77 (2000) 531.

    Google Scholar 

  11. Y. Yao, L. K. L. Falk, R. E. Morjan, O. A. Nerushev and E. E. B. Campbell, J. Mater. Sci.: Mater. Electron. 15 (2004) 533.

    Google Scholar 

  12. Ch. Bower, O. Zhou, W. Zhu, J. Werder and S. Jin, Appl. Phys. Lett. 77 (2000) 2767.

    Google Scholar 

  13. F. Rohmund, L. K. L. Falk and E. E. B. Campbell, Chem. Phys. Lett. 328 (2001) 369.

    Google Scholar 

  14. K. Bladh, L. K. L. Falk and F. Rohmund, Appl. Phys. A 70 (2000) 317.

    Google Scholar 

  15. EMS-on-Line, http://cimesg1.epfl.ch/CIOL/ems.html.

  16. O. A. Nerushev, R.-E. Morjan, D. I. Ostrovskii, M. Sveningsson, M. Jönsson, F. Rohmund and E. E. B. Campbell, Physics B 323 (2002) 51.

    Google Scholar 

  17. Y. Yao, L. K. L. Falk, R. E. Morjan, O. A. Nerushev and E. E. B. Campbell, manuscript in preparation.

  18. R. T. K. Baker, P. S. Harris, R. B. Thomas and R. J. Waite, J. Catalysis 30 (1973) 86.

    Google Scholar 

  19. M. P. Manning, J. E. Garmirian and R. C. Reid, Indust. Eng. Chem. Process Des. Dev. 21 (1982) 404.

    Google Scholar 

  20. A. J. H. M. Kock, P. K. De Bokx, E. Boellard, W. Klop and J. W. Geus, J. Catalysis 96 (1985) 468.

    Google Scholar 

  21. M. Audier, A. Oberlin and M. Coulon, J. Cryst. Growth 55 (1981) 549.

    Google Scholar 

  22. M. Audier, P. Bowen and W. Jones, ibid. 63 (1983) 125.

    Google Scholar 

  23. Y. Saito, T. Yoshikava, M. Okuda, N. Fijimoto, K. Sumiyama, K. Suzuki, A. Kasuya and Y. Nishina, J. Phys. Chem. Solids 54 (1994) 1849.

    Google Scholar 

  24. Y. Saito, in "Carbon Nanotubes", edited by M. Endo, S. Iijima, M. S. Dresselhaus (Pergamon, Elsevier Science Ltd., UK, 1996) p. 153.

    Google Scholar 

  25. H. U. Grabke, D. Moszynski, E. M. Müller-Lorenz and A. Schneider, Surf. Interface Anal. 34 (2002) 369.

    Google Scholar 

  26. J. Znang and O. Ostrovski, Ironmaking Steelmaking 29 (2002) 15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Y., Falk, L.K.L., Morjan, R.E. et al. Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part II: the nanotube film. Journal of Materials Science: Materials in Electronics 15, 583–594 (2004). https://doi.org/10.1023/B:JMSE.0000036037.84271.f0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSE.0000036037.84271.f0

Keywords

Navigation