Skip to main content
Log in

A General Approach for Constraint Solving by Local Search

  • Published:
Journal of Mathematical Modelling and Algorithms

Abstract

In this paper, we present a general approach for solving constraint problems by local search. The proposed approach is based on a set of high-level constraint primitives motivated by constraint programming systems. These constraints constitute the basic bricks to formulate a given combinatorial problem. A tabu search engine ensures the resolution of the problem so formulated. Experimental results are shown to validate the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarts, E. H. L. and Lenstra, J. K. (eds): Local Search in Combinatorial Optimization, Wiley, 1997.

  2. Beldiceanu, N., Bourreau, E., Chan, P. and Rivreau, D.: Partial search strategy in CHIP, presented at Metaheuristics International Conference, Sophia-Antipolis, France, 1997.

  3. Brailsford, S. C., Hubbard, P. M. and Smith, B. M.: The progressive party problem: A difficult problem of combinatorial optimization, Comput. Oper. Res. 23 (1996), 845–856.

    Article  MATH  MathSciNet  Google Scholar 

  4. Cheadle, A. M., Harvey, W., Sadler, A. J., Schimpf, J., Shen, K. and Wallace, M. G.: ECLiPSe: An introduction, IC-Parc, Imperial College London, Technical Report IC-Parc-03-1, 2003.

  5. Choi, K. M. F., Lee, J. H. M. and Stuckey, P. J.: A Lagrangian reconstruction of GENET, Artificial Intell. 123(1-2) (2000), 1–39.

    Article  MATH  MathSciNet  Google Scholar 

  6. Codognet, P. and Diaz, D.: Yet another local search method for constraint solving, in Lecture Notes in Comput. Sci. 2264, Springer-Verlag, 2001, pp. 73–88.

  7. Davenport, A., Tsang, E. P. K., Kangmin, Z. and Wang, C. J.: GENET: A connectionist architecture for solving constraint satisfaction problems by iterative improvement, in Proc. AAAI'94, 1994, pp. 325–330.

  8. Ferland, J. A., Hertz, A. and Lavoie, A.: An object-oriented methodology for solving assignment type problems with neighborhood search techniques, Oper. Res. 44(2) (1996), 347–359.

    MATH  MathSciNet  Google Scholar 

  9. Fleurent, C. and Ferland, J. A.: Object-oriented implementation of heuristic search methods for graph coloring, maximum clique and satisfiability, in M. Trick and D. S. Johnson (eds), Second DIMACS Challenge, special issue, Volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS, Providence, RI, pp. 619–652.

  10. Galinier, P. and Hao, J. K.: Tabu search for maximal constraint satisfaction problems, in Lecture Notes in Comput. Sci. 1330, Springer-Verlag, 1997, pp. 196–208.

  11. Galinier, P. and Hao, J. K.: Solving the progressive party problem by local search, in S. Voss, S. Martello, I. H. Osman and C. Roucairol (eds), Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer Academic Publishers, 1998, Chapter 29, pp. 419–432.

  12. Galinier, P. and Hao, J. K.: Hybrid evolutionary algorithms for graph coloring, J. Combin. Optim. 3(4) (1999), 379–397.

    Article  MATH  MathSciNet  Google Scholar 

  13. Glover, F. and Laguna, M.: Tabu Search, Kluwer Academic Publishers, 1997.

  14. Hao, J. K., Dorne, R. and Galinier, P.: Tabu search for frequency assignment in mobile radio networks, J. Heuristics 4(1) (1998), 47–62.

    Article  MATH  Google Scholar 

  15. Hertz, A. and de Werra, D.: Using Tabu Search techniques for graph coloring, Computing 39 (1987), 345–351.

    Article  MATH  MathSciNet  Google Scholar 

  16. Johnson, D. S., Aragon, C. R., McGeoch, L. A. and Schevon, C.: Optimization by simulated annealing: An experimental evaluation; Part II, Graph coloring and number partitioning, Oper. Res. 39(3) (1991), 378–406.

    Article  MATH  Google Scholar 

  17. Johnson, D. S. and Trick, M. A.: Proceedings of the 2nd DIMACS Implementation Challenge, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26, Amer. Math. Soc., 1996.

  18. Kirkpatrick, S., Gelatt, C. D., Jr. and Vecchi, M. P.: Optimization by simulated annealing, Science 220 (1983), 671–680.

    MathSciNet  Google Scholar 

  19. Mackworth, A. K.: Constraint satisfaction, in S. C. Shapiro (ed.), Encyclopedia on Artificial Intelligence, Wiley, New York, 1987.

    Google Scholar 

  20. Nonobe, K. and Ibaraki, T.: A tabu search approach to the constraint satisfaction problem as a general problem solver, European J. Oper. Res. 106 (1998), 599–623.

    Article  MATH  Google Scholar 

  21. Randall, M. and Abramson, D.: A general meta-heuristic based solver for combinatorial optimisation problems, Comput. Optim. Appl. 20 (2001), 185–210.

    Article  MATH  MathSciNet  Google Scholar 

  22. Smith, B. M., Brailsford, S. C., Hubbard, P. M. and Williams, H. P.: The progressive party problem: Integer linear programming and constraint programming compared, Constraints 1(1/2) (1996), 119–138.

    Article  MATH  MathSciNet  Google Scholar 

  23. Tsang, E.: Foundations of Constraint Satisfaction, Academic Press, 1993.

  24. Voss, S. and Woodruff, D. L. (eds): Optimization Software Class Libraries, Operations Research/Computer Science Interfaces 18, Kluwer Academic Publishers, 2002.

  25. Walser, J. P.: Integer Optimization by Local Search, Lecture Notes in Artificial Intelligence 1637, Springer-Verlag, 1999.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galinier, P., Hao, JK. A General Approach for Constraint Solving by Local Search. Journal of Mathematical Modelling and Algorithms 3, 73–88 (2004). https://doi.org/10.1023/B:JMMA.0000026709.24659.da

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMMA.0000026709.24659.da

Navigation