Skip to main content
Log in

Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The present study, using RAPD analysis, was undertaken to characterize genetic variation in domesticated cowpea and its wild progenitor, as well as their relationships. The materials used consisted of 26 domesticated accessions, including accessions from each of the five cultivar-group, and 30 wild/weedy accessions, including accessions from West, East and southern Africa. A total of 28 primers generated 202 RAPD bands. One hundred and eight bands were polymorphic among the domesticated compared to 181 among wild/weedy cowpea accessions. Wild accessions were more diverse in East Africa, which is the likely area of origin of V. unguiculata var. spontanea. Var. spontanea is supposed to have spread westward and southward, with a loss of variability, loss counterbalanceed in southern Africa by introgressions with local perennial subspecies. Although the variabilty of domesticated cowpea was the highest ever recorded, cultivar-groups were poorly resolved, and several results obtained with isozyme data were not confirmed here. However primitive cultivars were more diverse than evolved cultivars, which still suggests two consecutive bottlenecks within domesticated cowpea evolution. As isozymes and AFLP markers, although with a larger number of markers, RAPD data confirmed the single domestication hypothesis, the gap between wild and domesticated cowpea, and the widespread introgression phenomena between wild and domesticated cowpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abo-Elwafa A., Murai K. and Shimada T. 1995. Intra-and inter-specific variations in Lens revealed by RAPD markers. Theor. Appl. Genet. 90: 335–340.

    Google Scholar 

  • Ahmad M., McNeil D.L., Fautrier A.G., Armstrong K.F. and Paterson A.M. 1996. Genetic relationships in Lens species and parentage determination of their interspecific hybrids using RAPD markers. Theor. Appl. Genet. 92: 1091–1098.

    Google Scholar 

  • Ahmad F. 1999. Random amplified polymorphic DNA (RAPD) analysis reveals genetic relationships among the annual Cicer species. Theor. Appl. Genet. 98: 657–663.

    Google Scholar 

  • Akundabweni L.S.M. 1995. The potential of the arbitrarily primed polymerase chain reaction (AP-PCR) as a method to distinguish different genetic lines and strains in Vigna unguiculata (L.)Walp. S. Afr. J. Bot. 61: 5–8.

    Google Scholar 

  • Amadou H.I., Bebeli P.J. and Kaltsikes P.J. 2001. Genetic diversity in Bambara groundnut (Vigna subterranea L.) germplasm re-vealed by RAPD markers. Genome 44: 995–999.

    PubMed  Google Scholar 

  • Banerjee H., Pai R.A. and Sharma R.P. 1999. Restriction fragment length polymorphism and random amplified polymorphic DNA analysis of chickpea accessions. Biol. Plant. 42: 197–208.

    Google Scholar 

  • Baudoin J.P. and Maréchal R. 1985. Genetic diversity in Vigna. In: Singh S.R. and Rachie K.O. (eds), Cowpea research, production and utilization. John Wiley & Sons, Chichester, pp. 3–11.

    Google Scholar 

  • Beebe S., Ochoa I., Skroch P., Nienhuis J. and Tivang J. 1995. Genetic diversity among common bean breeding lines developed for central America. Crop Sci. 35: 1178–1183.

    Google Scholar 

  • Beebe S., Skroch P.W., Tohme J., Duque M.C., Pedraza F. and Nienhuis J. 2000. Structure of genetic diversity among common bean landraces of Middle American origin based on corre-spondence analysis of RAPD. Crop Sci. 40: 264–273.

    Google Scholar 

  • Briand L., Brown A.E., Lenne J.M. and Teverson D.M. 1998. Random amplified polymorphic DNA variation within and among bean landrace mixtures (Phaseolus vulgaris L.) from Tanzania. Euphytica 102: 371–377.

    Google Scholar 

  • Brown-Guedira G.L., Thompson J.A., Nelson R.L. and Warburton M.L. 2000. Evaluation of genetic diversity of soybean intro ductions and North American ancestors using RAPD and SSR markers. Crop Sci. 40: 815–823.

    Google Scholar 

  • Cattan-Toupance I., Michalakis Y. and Neema C. 1998. Genetic structure of wild bean populations in their south-andean centre of origin. Theor. Appl. Genet. 96: 844–851.

    Google Scholar 

  • Chevalier A. 1944. La dolique de Chine en Afrique. Rev. Bot. Appl. Agric. Trop. 24: 128–152.

    Google Scholar 

  • Coulibaly S., Pasquet R.S., Papa R. and Gepts P. 2002. AFLP analysis of the phenetic organization and genetic diversity of Vigna unguiculata L.Walp. reveals extensive gene flow between wild and domesticated types. Theor. Appl. Genet. 104: 358–366.

    PubMed  Google Scholar 

  • Dice L.R. 1945. Measures of the amount of ecologic association between species. Ecology. 26: 297–302.

    Google Scholar 

  • Doldi M.L., Vollmann J. and Lelley T. 1997. Genetic diversity in soybean as determined by RAPD and microsatellite analysis. Plant Breed. 116: 331–335.

    Google Scholar 

  • Doyle J.J. and Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.

    Google Scholar 

  • Duarte J.M., dos Santos J.B. and Melo L.C. 1999. Genetic diver-gence among common bean cultivars from different races based on RAPD markers. Genet. Mol. Biol. 22: 419–426.

    Google Scholar 

  • Dwivedi S.L., Gurtu S., Chandra S., Yuejin W. and Nigam S.N. 2001. Assessment of genetic diversity among selected groundnut germplasm. I: RAPD analysis. Plant Breed. 120: 345–349.

    Google Scholar 

  • Faris D.G. 1963. Evidence for the West African origin of Vigna sinensis (L.) Savi, PhD, University of California, Davis.

  • Ferguson M.E., Robertson L.D., Ford-Lloyd B.V. and Newbury H.J. 1998. Contrasting genetic variation amongst lentil landraces from different geographical origins. Euphytica 102: 265–273.

    Google Scholar 

  • Fofana B., Vekemans X., Du Jardin P. and Baudoin J.P. 1997. Genetic diversity in Lima bean (Phaseolus lunatus L.) as revealed by RAPD markers. Euphytica 95: 157–165.

    Google Scholar 

  • Fotso M., Azanza J.L., Pasquet R. and Raymond J. 1994. Molecular heterogeneity of cowpea (Vigna unguiculata, Fabaceae) seed storage proteins. Plant Syst. Evol. 191: 39–56.

    Google Scholar 

  • Freyre R., Ríos R., Guzmán L., Debouck D. and Gepts P. 1996. Ecogeographic distribution of Phaseolus spp. (Fabaceae) in Bolivia. Econ Bot 50: 195–215.

    Google Scholar 

  • Galvan M.Z., Aulicino M.B., Medina S.G. and Balatti P.A. 2001. Genetic diversity among Northwestern Argentinian cultivars of common bean (Phaseolus vulgaris L.) as revealed by RAPD markers. Genet. Resources Crop Evol. 48: 251–260.

    Google Scholar 

  • Garba M. and Pasquet R.S. 1998. Isozyme polymorphism within section Reticulatae of genus Vigna (Tribe Phaseoleae: Fabaceae). Biochem. Syst. Ecol. 26: 297–308.

    Google Scholar 

  • Gimenes M.A., Lopes C.R., Galgaro M.L., Valls J.E.M. and Koch-ert G. 2000. Genetic variation and phylogenetic relationships based on RAPD analysis in section Caulorrhizae, genus Arachis (Leguminosae). Euphytica 116: 187–195.

    Google Scholar 

  • Haley S.D., Miklas P.N., Afanador L. and Kelly J.D. 1994. Random amplified polymorphic DNA (RAPD) marker variability be-tween and within gene pools of common bean. J. Amer. Soc. Hort. Sci. 119: 122–125.

    Google Scholar 

  • Harlan J.R. 1971. Agricultural origins: centers and non centers. Science 174: 468–474.

    Google Scholar 

  • Hilu K.W. and Stalker H.T. 1995. Genetic relationships between peanut and wild species of Arachis sect Arachis (Fabaceae): evidence from RAPDs. Plant Syst. Evol. 198: 167–178.

    Google Scholar 

  • Johns M.A., Skroch P.W., Nienhuis J. and Hinrichsen P. 1997. Gene pool classification of common bean landraces from Chile based on RAPD and morphological data. Crop Sci. 37: 605–613.

    Google Scholar 

  • Lanham P.G., Fennell S., Moss J.P. and Powell W. 1992. Detection of polymorphic loci in Arachis germplasm using random am-plified polymorphic DNAs. Genome 35: 885–889.

    PubMed  Google Scholar 

  • Li Z.L. and Nelson R.L. 2001. Genetic diversity among soybean accessions from three countries measured by RAPDs. Crop Sci. 41: 1337–1347.

    Google Scholar 

  • Link W., Dixkens C., Singh M., Schwall M. and Melchinger A.E. 1995. Genetic diversity in European and Mediterranean faba bean germ plasm revealed by RAPD markers. Theor. Appl. Genet. 90: 27–32.

    Google Scholar 

  • Liu C.J. 1996. Genetic diversity and relationships among Lablab purpureus genotypes evaluated using RAPD as markers. Euphytica 90: 115–119.

    Google Scholar 

  • Maciel F.L., Gerald L.T.S. and Echeverrigaray S. 2001. Random amplified polymorphic DNA (RAPD) markers variability among cultivars and landraces of common beans (Phaseolus vulgaris L.) of south-Brazil. Euphytica 120: 257–263.

    Google Scholar 

  • Maréchal R., Masherpa J.M. and Stainier F. 1978. Etude tax-onomique d'un groupe complexe d'espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base des données morphologiques et polliniques, traitées par l'analyse informatique. Boissiera 28: 1–273.

    Google Scholar 

  • Menéndez C.M., Hall A.E. and Gepts P. 1997. A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred domesticated lines. Theor. Appl. Genet. 95: 1210–1217.

    Google Scholar 

  • Mienie C.M.S., Smit M.A. and Pretorius P.J. 1995. Use of random amplified polymorphic DNA for identification of South African soybean cultivars. Field. Crop Res. 43: 43–49.

    Google Scholar 

  • Mignouna H.D., Ng N.Q., Ikea J. and Thottappilly G. 1998. Genetic diversity in cowpea as revealed by random amplified polymor phic DNA. J. Genet. Breed. 52: 151–159.

    Google Scholar 

  • Mimura M., Yasuda K. and Yamaguchi H. 2000. RAPD variation in wild, weedy and cultivated azuki beans in Asia. Genet. Resour. Crop Evol. 47: 603–610.

    Google Scholar 

  • Murdock G.P. 1959. Africa, Its Peoples and Their Culture History. McGraw Hill Book Company, New York.

    Google Scholar 

  • Nei M. 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Google Scholar 

  • Nei M. 1973. Analysis of gene diversity in subdivided populations Proc. Natl. Acad. Sci. USA 70:, pp. 3321–3323.

    Google Scholar 

  • Nei M. and Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases Proc. Natl. Acad. Sci. USA 76:, pp. 5269–5273.

    Google Scholar 

  • Ng N.Q. 1995. Cowpea, Vigna unguiculata (Leguminosae-Papilionoideae). In: Smartt J. and Simmonds N.W. (eds), Evolu-tion of Crop Plants ed. 2. Longmans, New York, pp. 326–332.

    Google Scholar 

  • Nienhuis J., Tivang J., Skroch P. and Dos Santos J.B. 1995. Genetic relationships among cultivars and landraces of lima bean (Phaseolus lunatus L.) as measured by RAPD markers. J. Amer. Soc. Hort. Sci. 120: 300–306.

    Google Scholar 

  • Odeigah P.G.C. and Osanyinpeju A.O. 1996. Seed protein electrophoretic characterization of cowpea (Vigna unguiculata) germ-plasm from IITA bank. Genet. Resour. Crop Evol. 43: 485–491.

    Google Scholar 

  • Padulosi S. 1993. Genetic diversity, taxonomy and ecogeographic survey of the wild relatives of cowpea (Vigna unguiculata (L.) Walpers.), PhD, Université catholique, Louvain La Neuve, Belgium.

    Google Scholar 

  • Padulosi S. and Ng N.Q. 1997. Origin, taxonomy, and morphology of Vigna unguiculata (L.)Walp. In: Singh B.B., MohanRaj D.R., Dashiell K.E. and Jackai L.E.N. (eds), Advances in cowpea research. IITA-JIRCAS, Ibadan, pp. 1–12.

    Google Scholar 

  • Paiva E., Vilarinhos A.D., Debarros E.G., Sediyama C.S. and Moreira M.A. 1994. Use of the random amplified polymorphic DNA technique to characterize soybean (Glycine max (L.) Mer-rill) genotypes. Rev. Bras. Genet. 17: 287–290.

    Google Scholar 

  • Panella L. and Gepts P. 1992. Genetic relationship within Vigna unguiculata (L.) Walp. based on isozyme analyses. Genet. Re-sour. Crop Evol. 39: 71–88.

    Google Scholar 

  • Panella L., Kami J. and Gepts P. 1993.Vignin diversity in wild and cultivated taxa of Vigna unguiculata (L.) Walp. (Fabaceae). Econ. Bot. 47: 371–386.

    Google Scholar 

  • Pasquet R.S. 1993a. Classification infraspéécifique des formes spon-tanées de Vigna unguiculata (L.) Walp. à partir de données morphologiques. Bull. Jard. Bot. Nat. Belg. 62: 127–173.

    Google Scholar 

  • Pasquet R.S. 1993b. Two new subspecies of Vigna unguiculata (L.) Walp. (Leguminosae: Papilionoideae). Kew Bull. 48: 805–806.

    Google Scholar 

  • Pasquet R.S. 1993c. Variation at isozyme loci in wild Vigna un-guiculata (L.) Walp. (Fabaceae, Phaseoleae). Plant Syst. Evol. 186: 157–173.

    Google Scholar 

  • Pasquet R.S. 1997. A new subspecies of Vigna unguiculata (Leguminosae-Papilionoideae). Kew Bull. 52: 840.

    Google Scholar 

  • Pasquet R.S. 1998. Morphological study of cultivated cowpea Vigna unguiculata (L.) Walp. Importance of ovule number and definition of cv. gr. Melanophthalmus. Agronomie 18: 61–70.

    Google Scholar 

  • Pasquet R.S. 1999. Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theor. Appl. Genet. 98: 1104–1119.

    Google Scholar 

  • Pasquet R.S. 2000. Allozyme diversity of cultivated cowpea Vigna unguiculata (L.) Walp. Theor. Appl. Genet. 101: 211–219.

    Google Scholar 

  • Pasquet R. 2001. Vigna Savi. In: Mackinder B., Pasquet R., Polhill R. and Verdcourt B. (eds), Flora Zambesiaca,volume part Phaseoleae. Royal Botanic Gardens, Kew, pp. 121–156.

  • Pasquet R.S. and Baudoin J.P. 2001. Cowpea. In: Charrier A., Jacquot M., Hamon S. and Nicolas D. (eds), Tropical Plant Breeding. Science publishers, Enfield, pp. 177–198.

  • Piper C.V. 1913. The wild prototype of cowpea. USDA Bureau of Plant Industry. Circular No 124. Miscellaneous papers. Washing-ton, Government Printing Office: 29–32.

    Google Scholar 

  • Raina S.N., Rani V., Kojima T., Ogihara Y., Singh K.P. and Devarumath R.M. 2001. RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identifi-cation, and phylogenetic relationships in peanut (Arachis hypo-gaea) cultivars and wild species. Genome 44: 763–772.

    PubMed  Google Scholar 

  • Ratnaparkhe M.B., Gupta V.S., Venmurthy M.R. and Ranjekar P.K. 1995. Genetic fingerprinting of pigeonpea [Cajanus cajan (L.) Millsp.] and its wild relatives using RAPD markers. Theor. Appl. Genet. 91: 893–898.

    Google Scholar 

  • Rawal K.M. 1975. Natural hybridization among wild, weedy and cultivated Vigna unguiculata (L.)Walp. Euphytica 24: 699–707.

    Google Scholar 

  • Richard A. 1847. Tentamen florae abyssinicae, volumen primum. Arthus Bertrand, Paris.

    Google Scholar 

  • Rohlf F.J. 1993. NTSYS-pc Numerical taxonomy and multivariate analysis system, version 1.80. Exeter software. Applied Bio statistics Inc., New York.

    Google Scholar 

  • Saitou N. and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  Google Scholar 

  • Samec P. and Nasinec V. 1995. Detection of DNA polymorphism among pea cultivars using RAPD tehnique. Biol. Plant. 37: 321–327.

    Google Scholar 

  • Santalla M., Power J.B. and Davey M.R. 1998. Genetic diversity in mung bean germplasm revealed by RAPD markers. Plant Breed. 117: 473–478.

    Google Scholar 

  • Sharma S.K., Dawson I.K. and Waugh R. 1995. Relationships among cultivated and wild lentils revealed by RAPD analysis. Theor. Appl. Genet. 91: 647–654.

    Google Scholar 

  • Singh B.B., Chambliss O.L. and Sharma B. 1997. Recent advances in cowpea breeding. In: Singh B.B., MohanRaj D.R., Dashiell K.E. and Jackai L.E.N. (eds), Advances in cowpea research. IITA-JIRCAS, Ibadan, pp. 30–49.

    Google Scholar 

  • Skroch P.W. and Nienhuis J. 1995. Qualitative and quantitative characterization of RAPD variation among snap bean (Phaseolus vulgaris) genotypes. Theor. Appl. Genet. 91: 1078–1085.

    Google Scholar 

  • Sonnante G. and Pignone D. 2001. Assessment of genetic variation in a collection of lentil using molecular tools. Euphytica 120: 301–307.

    Google Scholar 

  • Steele W.M. 1972. Cowpeas in Nigeria, PhD, University of Read-ing, UK.

  • Steele W.M. 1976. Cowpeas, Vigna unguiculata (Leguminosaeguiculata Papillionatae). In: Simmonds N.W. (ed.), Evolution of Crop Plants. Longman, London, pp. 183–185.

    Google Scholar 

  • Subramanian V., Gurtu S., Nageswara Rao R.C. and Nigam S.N. 2000. Identification of DNA polymorphism in cultivated ground-nut using random amplified polymorphic DNA (RAPD) assay. Genome 43: 656–660.

    PubMed  Google Scholar 

  • Thompson J.A., Nelson R.L. and Vodkin L.O. 1998. Identification of diverse soybean germplasm using RAPD markers. Crop Sci. 38: 1348–1355.

    Google Scholar 

  • Tosti N. and Negri V. 2002. Efficiency of three PCR-based markers in assessing genetic variation among cowpea (Vigna un subsp. unguiculata) landraces. Genome 45: 268–275.

    PubMed  Google Scholar 

  • Vaillancourt R.E. and Weeden N.F. 1992. Chloroplast DNA poly-morphism suggests a Nigerian center of domestication for the cowpea, Vigna unguiculata (Leguminosae). Am. J. Bot. 79: 1194–1199.

    Google Scholar 

  • Vaillancourt R.E., Weeden N.F. and Barnard J. 1993. Isozyme diversity in the cowpea species complex. Crop Sci. 33: 606–613.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Gepts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ba, F.S., Pasquet, R.S. & Gepts, P. Genetic diversity in cowpea [Vigna unguiculata (L.) Walp.] as revealed by RAPD markers. Genetic Resources and Crop Evolution 51, 539–550 (2004). https://doi.org/10.1023/B:GRES.0000024158.83190.4e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GRES.0000024158.83190.4e

Navigation