Skip to main content
Log in

Galectins in kidney development

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Galectins are a family of proteins with overlapping but distinct carbohydrate-binding specificities. They differ in cell-type and tissue distribution, and have various functions. Extracellularly several galectins can modulate cellular adhesive interactions and signalling pathways, effects that may be important in the establishment and maintenance of tissue organization during normal development. This review will summarise recent progress in defining the roles of galectins that are expressed in the kidney in normal development, and discuss the evidence linking aberrant expression of galectins with kidney disease. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bard JBL, Growth and death in the developing mammalian kidney: Signals, receptors and conversions, Bioessays 24, 72-82 (2002).

    Google Scholar 

  2. Vaino S, Muller U, Inductive tissue interactions, cell signalling, and the control of kidney organogenesis Cell 90, 975-8 (1997).

    Google Scholar 

  3. Brandenberger R, Schmidt A, Linton J, Wang D, Backus C, Denda S, Muller U, Reichardt LF, Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin ?8 ?1 integrin in the embryonic kidney, J Cell Biol 154, 447-58 (2001).

    Google Scholar 

  4. Gambiner BM, Cell adhesion: The molecular basis of tissue architecture and morphogenesis, Cell 84, 345-57 (1996).

    Google Scholar 

  5. Kreidberg JA, Symos JM, Integrins in kidney development, function and disease, Am J Physiol 279, F233-42 (2000).

    Google Scholar 

  6. Zent R, Bush KT, Pohl ML, Quaranta V, Koshikawa N, Wang Z, Kreidberg JA, Sakurai H, Sturat RO, Nigam SK, Involvement of laminin binding integrins and laminin-5 in branching morphogenesis of the ureteric bud during kidney development, Dev Biol 238, 289-302 (2001).

    Google Scholar 

  7. Ekblom P, Nordling S, Saxen L, Rasilo ML, Renkonen O, Cell interactions leading to kidney tubule determination are tunicamycin sensitive, Cell Different 8, 347-52 (1979).

    Google Scholar 

  8. Ekblom P, Lash JW, Lehtonen E, Nordling S, Saxen L, Inhibition of morphogenetic cell interactions by 6-diazo-5-oxo-norleucine, Exp.Cell Res 121, 121-26 (1979).

    Google Scholar 

  9. Zinkl GM, Zuk A, van der Bijl P, van Meer G, Matlin KS, An antiglycolopid antibody inhibits Madin-Darby canine kidney cell adhesion to laminin and interferes with basolateral polarization and tight junction formation, J Cell Biol. 133, 695-708 (1996)

    Google Scholar 

  10. Szulman AE, Experimental in vitro organogenesis and its modifi-cation by antibody directed to a cell surface antigen, Dev Biol 43, 101-8 (1975).

    Google Scholar 

  11. Pohl M, Akurai H, Stuart RO, Nigam SK, Role of hyaluronan and CD44 in branching morphogenesis of ureteric bud cells, Dev Biol 224, 312-25 (2000).

    Google Scholar 

  12. Davies J, Lyon M, Gallagher J, Garrod D, Sulphated proteoglycan is required for collecting duct growth and branching but not nephron formation during kidney development, J Cell Sci 121, 1507-17 ( 1995).

    Google Scholar 

  13. Grisaru S, Cano-Gauci D, Tee J, Filmus J, Rosenblum ND, Glypican-3 modulates BMP-and FGF-mediated effects during renal branching morphogenesis, Dev Biol 231, 31-46 (2001).

    Google Scholar 

  14. Bullock SL, Fletcher JM, Beddington RSP, Wilson VA, Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase, Genes Dev 12, 1894-906 (1998).

    Google Scholar 

  15. Merry CLR, Bullock SL, Swan DC, Backen AC, Lyon M, Beddington RSP, Wilson VA Gallagher JT The molecular phenotype of heparan sulfate in the HS2ST-/- mutant mouse, J Biol Chem 276, 35429-34 (2001).

    Google Scholar 

  16. Laitinen L, Virtanen I, Saxen L, Changes in the glycosylation pattern during embryonic development of mouse kidney as revealed with lectin conjugates, J Histochem. Cytochem 35, 55-65 (1987).

    Google Scholar 

  17. Truong LD, Phung VT, Mattioli CA, Glycoconjugates in normal human kidney.Ahistochemical study using 13 biotinylated lectins, Histochem 90, 51-60 (1988).

    Google Scholar 

  18. Hammarstrom S, Murphy LA, Goldstein IJ, Etzler ME, Carbohydrate binding spccificity of four N-acetylgalactosamine-specific lectins, Biochemistry 16, 2750-5 (1997).

    Google Scholar 

  19. Hinglais N, Bretton R, Rouchon M, Oriol R, Bariety J, Ultrstructural localization of blood group A antigen in normal human kidney, J Ultrastruc Res 74, 34-45 (1981).

    Google Scholar 

  20. Jung SK, Fujimoto D, A novel β-galactoside-binding lectin in adult rat kidney, J Biochem 116, 547-53 (1994).

    Google Scholar 

  21. Ahmed H, Vasta GR, Galectins: Conservation of functionally and structurally relevant amino acid residues defines two types of carbohydrate recognition domains, Glycobiol 4, 545-9 (1994).

    Google Scholar 

  22. Henrick K, Bawumia S, Barboni EAM, Mehul B, Hughes RC, Identification in the galectins of subsites for sugar-binding at the non-reducing end of the central galactose of oligosaccharide ligands. Sequence analysis, homology modelling and mutagenesis studies of hamster galectin-3, Glycobiol 8, 48-57, (1998).

    Google Scholar 

  23. Rini JM, Lobsanov YD, New animal lectin structures, Current Opinion Struct Biol 9, 578-84 (1999).

    Google Scholar 

  24. Sato M, Nishi N, Shoji H, Seki M, Hashidate T, Hirabayashi J, Kasai KI, Hata Y, Suzuki S, Hirashima M, Nakamura T, Functional analysis of the carbohydrate recognition domains and a linker peptide of galectin-9 as to eosinophil chemoattractant activity, Glycobiol 12, 191-7 (2002).

    Google Scholar 

  25. Barboni EAM, Bawumia S, Henrick K, Hughes RC, Molecular modelling and mutagenesis studies of the N-terminal domain of galectin-3: Evidence for participation with the C-terminal carbohydrate recognition domain in oligosaccharide binding, Glycobiol 10, 1201-08 (2000).

    Google Scholar 

  26. Mazurek N, Conklin J, Byrd JC, Raz A, Breselier RS, Phosphorylation of the β-galactoside-binding protein galectin-3 modulates binding to its ligands, J Biol Chem 275, 36311-5 (2000).

    Google Scholar 

  27. Solis D, Romero A, Kaltner H, Gabius HJ, Diaz-Maurino T, Different architecture of the combining site of the two chicken galectins revealed by chemical mapping studies with synthetic ligand derivatives, J Biol Chem 271, 12744-8 (1996).

    Google Scholar 

  28. Hughes RC, Galectins as modulators of cell adhesion, Biochemie 83, 667-76 (2001).

    Google Scholar 

  29. Liu F-T, S-Type mammalian lectins in allergic inflammation, Immunol Today 14, 486-90 (1993).

    Google Scholar 

  30. Stierstorfer B, Kaltner H, Neumuller C, Sinowatz F, Gabius HJ, Temporal and spatial regulation of expression of two galectins during kidney development of the chicken, Histochem J 32, 325-36 (2000).

    Google Scholar 

  31. Murphy KM, Zalik SE, Endogenous galectins and effects of galectin hapten inhibitors on the differentiation of the chick mesonephros, Devel Dynamics 215, 248-63 (1999).

    Google Scholar 

  32. Poirier F, Timmons PM, Chan CTJ, Guenet JL, Rigby PWJ, Expression of the L14 lectin during mouse embryogenesis suggests roles during pre-and post-implantation development, Devel 115, 143-55 (1992).

    Google Scholar 

  33. Burger A, Filsinger S, Cooper DNW, Hansch GM, Expression of the 14 kDa galactose-binding protein, galectin-1, on human tubular epithelial cells, Kidney Int 50, 750-59 (1996).

    Google Scholar 

  34. Wasano K, Hirakawa Y, Yamamoto T, Immunohistochemical localization of 14kDa galactoside-binding lectin in various organs of the rat, Cell Tissue Res 259, 43-9 (1990).

    Google Scholar 

  35. Winyard PJD, Bao Q, Hughes RC, Woolf AS, Epithelial galectin-3 during human nephrogenesis and childhood cystic disease, J Am Soc Nephrol 8, 1647-57 (1997).

    Google Scholar 

  36. Bullock SL, Johnson TM, Bao Q, Hughes RC, Winyard PJD, Woolf AS, Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney, J Am Soc Nephrol 12, 515-23 (2001).

    Google Scholar 

  37. Bao Q, Hughes RC, Galectin-3 expression and effects in cyst enlargement and tubulogenesis in kidney epithelial MDCK cells cultured in three-dimensional matrices, in vitro J Cell Sci 108, 2791-800 (1995).

    Google Scholar 

  38. Bao Q, Hughes RC, Galectin-3 and polarized growth within collagen gels of wild-type and ricin-resistant MDCK renal epithelial cells, Glycobiol 9, 489-95 (1999).

    Google Scholar 

  39. Hughes RC, Secretion of the galectin family of mammalian carbohydrate-binding proteins, Biochim Biophys Acta 1473, 172-85 (1999).

    Google Scholar 

  40. Mengwasser J, Liu FT, Sleeman JP, Galectin-3 is strongly upregulated in nonapoptosing mammary epithelial cells during rat mammary gland involution, Glycobiol 12, 129-34 (2002).

    Google Scholar 

  41. Steffgen K, Dufraux K, Hathaway H, Enhanced branching morphogenesis in mammary glands of mice lacking cell surface β1,4-galactosyltransferase, Devel Biol 244, 114-33 (2002).

    Google Scholar 

  42. Marker PC, Stephan JP, Lee J, Bald L, Mather JP, Cunha GR, Fucosyltransferase I and H-type complex carbohydrates modulate epithelial cell proliferation during prostatic branching morphogenesis, Devel Biol 95-108 (2001).

  43. Hikita C, Takito J, Vijayakumar S, Al-Awqati Q, Only multimeric hensin located in the extracellular matrix can induce apical endocytosis and reverse the polarity of intercalated cells, J Biol Chem 274, 17671-6 (1999).

    Google Scholar 

  44. Hikita C, Vijayakumar S, Takito J, Erdjument-Bromage H, Tempst P, Al-Awqati Q, Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin-3, J.Cell Biol 151, 1235-46 (2001).

    Google Scholar 

  45. Wada J, Kanwar YS, Identification and characterization of galectin-9, a novel β-galactoside-binding mammalian lectin, J Biol Chem 272, 6078-86 (1997).

    Google Scholar 

  46. Wada J, Ota A, Wallner EI, Kanwar YS, Developmental regulation, expression and apoptotic potential of galectin-9, a β-galactosidebinding lectin, J Clin Invest 99, 2452-61 (1997).

    Google Scholar 

  47. Leal-Pinto E, Wenjing T, Richardson M, Knorr BA, Abramson RG, Molecular cloning and functional reconstitution of a urate transporter/channel, J Biol Chem 272, 617-25 (1997).

    Google Scholar 

  48. Nishiyama J, Kobayashi S, Ishida A, Nakabayashi I, Tajima O, Miua S, Katayama M, Nogami H, Up-regulation of galectin-3 in acute renal failure of the rat, Amer J Pathol, 157 815-23 (2000).

    Google Scholar 

  49. Rappoport JS, Lipkowitz MS, Abramson RG Localization and topology of a urate transporter/channel, a galectin, in epithelium- derived cells, Amer J Physiol 281, C1926-39 (2001).

    Google Scholar 

  50. Enomoto A, Kimura H, Chatroungdua A, Shigata Y, Jutabha P, Cha SH, Hosoyamada M, Takeda M, Sekine T, Igarashi T, Matsuo H, Kikuchi Y, Oda T, Ichida K, Hosoya T, Shimokata K, Niwa T, Kanal Y, Endou H, Molecular identification of a renal urate-anion exchanger that regulates blood urate levels, Nature 417, 447-52 (2002).

    Google Scholar 

  51. Harris PC, Autosomal dominant polycystic kidney disease: Clues to pathogenesis, Human Mol Gen 8, 1861-6 (1999).

    Google Scholar 

  52. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, Kubly V, Cunningham JM, Bacallo R, Ishibashi M, Milliner DS, Torres VE, Harris P, The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein, Nature Gen 30, 259-69 (2002).

    Google Scholar 

  53. Wang L, Friess H, Zhu Z, Frigeri L, Zimmerman A, Korc M, Berberat PO, Buchler MW, Galectin-1 and galectin-3 in chronis pancreatitis, Lab Invest 80, 1233-41 (2000).

    Google Scholar 

  54. Liu F-T, Hsu DK, Zuberi RI, Kuwabara S, Chi EY, Henderson WR, Expression and function of galectin-3, a β-galactoside-binding lectin, in human monocytes and macrophages, Amer J Pathol 147, 1016-28 (1995).

    Google Scholar 

  55. Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, Hirashima M, Liu F-T, Human galectin-3 is a novel chemoattractant for monocytes and macrophages, J.Immunol 165, 2156-64 (2000).

    Google Scholar 

  56. Sato S, Hughes RC, Regulation of secretion and surface expression of Mac-2, a galactoside-binding protein of macrophages, J Biol Chem 269, 4424-30 (1994).

    Google Scholar 

  57. Sasaki S, Bao Q, Hughes RC, Galectin-3 modulates rat mesangial cell proliferation and matrix synthesis during experimental glomerulonephritis induced by anti-Thy1.1 antibodies, J Pathol 187, 481-9 (1999).

    Google Scholar 

  58. Tsuchiyama Y, Wada J, Zhang H, Morita Y, Hiragushi K, Hida K, Shikata K, Yamamura M, Kanwar YS, Makino H, Efficacy of galectins in the amelioration of nephrotoxic serum nephritis in Wistar rats, Kidney Int 58, 1941-52 (2000).

    Google Scholar 

  59. Pugliase G, Pricci F, Iacobini C, Leto G, Amadio L, Barsotii P, Frigeri L, Hsu DK, Vlassara H, Liu FT, di Mario U Accelerated diabetic glomerulopathy in galectin-3/AGE receptor knockout mice, FASB J 15, 2471-9 (2001).

    Google Scholar 

  60. Pugliase G, Pricci F, Leto G, Amadio L, Iacobini C, Romeo G, Lenti L, Sale P, Gradini R, Liu FT, di Mario U, The diabetic milieu modulates the AGE-receptor complex in the mesangium by inducing or up-regulating galectin-3 expression, Diabetes 49, 1249-57 (2000).

    Google Scholar 

  61. Colnot C, Fowlis D, Ripoche MA, Bouchaert I, Poirier F, Embryonic implantation in galectin-1/galectin-3 double mutant mice, Devel Dyn 211, 306-13 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Colin Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, R.C. Galectins in kidney development. Glycoconj J 19, 621–629 (2002). https://doi.org/10.1023/B:GLYC.0000014094.39168.fd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000014094.39168.fd

Navigation