Skip to main content
Log in

Fruit colour polymorphism in Acacia ligulata: seed and seedling performance, clinal patterns, and chemical variation

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Fruit colour polymorphisms are widespread in nature, but their ecological and evolutionary dynamics remain poorly understood. Here we examine Acacia ligulata, a shrub of the Australian arid zone which exhibits a red/orange/yellow aril colour polymorphism. We asked whether the polymorphism had a genetic basis; whether selection acted differentially on morphs during the seed and seedling stages; whether geographic variation in morph frequencies was correlated with environmental factors; and whether morphs differed in physical or chemical characteristics that might influence selection on them. When grown to maturity in a common greenhouse environment, maternal families of seeds showed phenotypic patterns consistent with biparental genetic control of the polymorphism. In contrast to other fruit-colour polymorphic species, progeny of A. ligulata morphs did not vary in rates of seedling emergence or survival in a common garden. Sampling along a 580 km transect revealed clinal variation in morph frequencies. Frequencies of the yellow morph decreased, and frequencies of the red morph increased, across a gradient of decreasing temperature and increasing rainfall. Morphs did not differ in seed mass, aril mass, or in profiles of fatty acids and flavonoids in either arils or seeds. However, morphs showed consistent differences in carotenoid profiles' and elemental content of arils, suggesting that selection by avian and insect seed dispersers, seed predators and herbivores should be investigated. These patterns indicate that both abiotic and biotic factors may contribute to selection on the A. ligulata polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auld, T.D. (1995a) Soil seedbank patterns of four trees and shrubs from arid Australia. J. Arid Env. 29, 33–45.

    Article  Google Scholar 

  • Auld, T.D. (1995b) The impact of herbivores on regeneration in four trees from arid Australia. Rangeland J. 17, 213–227.

    Article  Google Scholar 

  • Auld, T.T. and Denham, A.J. (2001) Flora conservation issues at Kinchega National Park, western NSW. Cunninghamia 7, 27–41.

    Google Scholar 

  • Britton, G., Liaaen-Jensen, S. and Pfander, H. (1995) Carotenoids today and challenges for the future. In G. Britton, S. Liaaen-Jensen and H. Pfander (eds) Carotenoids. Vol. 1A. Birkhauser Verlag, Basel, pp. 13–26.

    Google Scholar 

  • Carroll, M., Hanlon, A., Hanlon, T., Zangerl, A.R. and Berenbaum, M.R. (1997) Behavioral effects of carotenoid sequestration by the parsnip webworm, Depressaria pastinacella. J. Chem. Ecol. 23, 2707–2719.

    CAS  Google Scholar 

  • Chapman, A.R. and Maslin, B.R. (1992) Acacia miscellany 5: a review of the A. bivenosa group (Leguminosae: Mimosoideae: Section Phyllodineae). Nuytsia 8, 249–283.

    Google Scholar 

  • Davidson, D.W. and Morton, S.R. (1984) Dispersal adaptations of some Acacia species in the Australian arid zone. Ecology 65, 1038–1051.

    Article  Google Scholar 

  • Epling, C. and Dobzhansky, T. (1942) Genetics of natural populations: VI. Microgeographical races in Linanthus parryae. Genetics 27, 317–332.

    Google Scholar 

  • Feltwell, J. (1978) The distribution of carotenoids in insects. In J.B. Harborne (ed.) Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London, pp. 277–293.

    Google Scholar 

  • Forde, N. (1986) Relationships between birds and fruits in temperate Australia. In. H.A. Ford and D.C. Paton (eds) The Dynamic Partnership: Birds and Plants in Southern Australia. Government Printer, South Australia, pp. 42–58.

    Google Scholar 

  • Gervais, J.A., Noon, R.B. and Willson, M.F. (1999) Avian selection of the color-dimorphic fruits of salmonberry, Rubus spectabilis: a field experiment. Oikos 84, 77–86.

    Google Scholar 

  • Gervais, J.A. Traveset, A. and Willson, M.F. (1998) The potential for seed dispersal by the banana slug (Ariolimax columbianus). Am. Midl. Nat. 140, 103–110.

    Article  Google Scholar 

  • Gillespie, J.H. (1998) Population Genetics: A Concise Guide. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Goodwin, T.W. and Goad, L.J. (1970) Carotenoids and triterpenoids. In A.C. Hulme (ed.) The Biochemistry of Fruits and Their Products. Vol. 1 Academic Press, London, pp. 305–368.

    Google Scholar 

  • Groos, C., Gay, G., Perretant, M.-R., Gervais, L., Bernard, M., Dedryver, F. and Charmet, G. (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a whitexred grain bread-wheat cross. Theor. Appl. Genet. 104, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Harding, J. and Barnes, K. (1977) Genetics of Lupinus. X. Genetic variability, heterozygosity and outcrossing in colonial populations of Lupinus succulentus. Evolution 31, 247–255.

    Article  Google Scholar 

  • Hedrick, P.W. (1986) Genetic polymorphism in heterogeneous environments: a decade later. Ann. Rev. Ecol. Syst. 17, 535–566.

    Article  Google Scholar 

  • Hill, G.E. (2002) A Red Bird in a Brown Bag: The Function and Evolution of Colorful Plumage in the House Finch. Oxford University Press, New York.

    Google Scholar 

  • Hintze, J. (2002) PASS. Number Cruncher Statistical Systems, Kaysville, Utah, USA.

    Google Scholar 

  • Huh, J.H., Kang, B.C., Nahm, S.H., Kim, S., Ha, K.S., Lee, M.H. and Kim, B.D. (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor. Appl. Genet. 102, 524–530.

    Article  CAS  Google Scholar 

  • Kayser, H. (1985) Pigments. In G.A. Kerkut and L.E. Gilbert (eds) Comparative Insect Physiology, Biochemistry, and Pharmacology. Vol. 10. Academic Press, New York, pp. 368–415.

    Google Scholar 

  • Lefebvre, V., Kuntz, M., Camara, B. and Palloix, A. (1998) The capsanthin-capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol. Biol. 36, 785–789.

    Article  PubMed  CAS  Google Scholar 

  • Letnic, M., Dickman, C.R. and McNaught, G. (2000) Bet-hedging and germination in the Australian arid zone shrub Acacia ligulata. Aust. Ecol. 25, 368–374.

    Article  Google Scholar 

  • Levey, D.J. and Martinez del Rio, C. (2001) It takes guts (and more) to eat fruit: lessons from avian nutritional ecology. Auk 118, 819–831.

    Article  Google Scholar 

  • Maslin, B.R. and Hopper, S.D. (1982) Phytogeography of Acacia (Leguminosae: Mimosoideae) in Central Australia. In W.R. Barker and P.J.M. Greenslade (eds) Evolution of the Flora and Fauna of Arid Australia. Peacock Publications, Frewville, South Australia, pp. 301–315.

    Google Scholar 

  • Mayr, E. (1965) Animal Species and Evolution. Belknap Press, Cambridge, MA, USA.

    Google Scholar 

  • McGinley, M.A., Temme, D.H. and Geber, M.A. (1987) Parental investment in offspring in variable environments: theoretical and empirical considerations. Am. Nat. 130, 370–398.

    Article  Google Scholar 

  • Mendel, G. (1865) Experiments in Plant-hybridisation. Harvard University Press Edition, 1941, Cambridge.

  • Murphy, M.E. (1996) Nutrition and metabolism. In C. Carey (ed.) Avian Energetics and Nutritional Ecology. Chapman and Hall, New York, pp. 31–60.

    Google Scholar 

  • Nishida, R., Rothschild, M. and Mummery, R. (1994) A cyanoglucoside, sarmentosin, from the Magpie Moth, Abraxas grossulariata, Geometridae: Lepidoptera. Phytochemistry 36, 37–38.

    Article  CAS  Google Scholar 

  • O'Dowd, D.J. and Gill, A.M. (1986) Seed dispersal syndromes in Australian Acacia. In D.R. Murray (ed.) Seed Dispersal. Academic Press, San Diego, California, pp. 87–122.

    Google Scholar 

  • Olson, V.A. and Owens, I.P.F. (1998) Costly sexual signals: are carotenoids rare, risky, or required? Trends Ecol. Evol. 13, 510–514.

    Article  Google Scholar 

  • Philippi, T.E. (1993) Multiple regression: herbivory. In S.M. Scheiner and J. Gurevitch, (eds) Design and Analysis of Ecological Experiments. Chapman and Hall, New York, NY, pp. 183–210.

    Google Scholar 

  • Puckey, H.L., Lill, A and O'Dowd, D.J. (1996) Fruit color choices of captive silvereyes (Zosterops lateralis). Condor 98, 780–790.

    Google Scholar 

  • Rothschild, M. (1980) Remarks on carotenoids in the evolution of signals. In L.E. Gilbert and P.H. Raven, (eds) Coevolution of Animals and Plants. Revised Edition, University of Texas Press, Austin, pp. 20–50.

    Google Scholar 

  • Rothschild, M., Mummery, R. and Farrell, C. (1986) Carotenoids of butterfly models and their mimics (Lep: Papilionidae and Nymphalidae). Biol. J. Linn. Soc. 28, 359–372.

    Google Scholar 

  • SAS Institute (2000) The SAS System for Windows, release 8.1. SAS Institute, Cary, NC, USA.

    Google Scholar 

  • Scheiner, S.M. (1993) MANOVA: multiple response variables and multispecies interactions. In S.M. Scheiner and J. Gurevitch, (eds) Design and Analysis of Ecological Experiments. Oxford University Press, Oxford, pp. 94–112.

    Google Scholar 

  • Sharma, S. (1996) Applied Multivariate Techniques. Wiley, New York.

    Google Scholar 

  • Sheppard, P.M. (1951) Fluctuations in the selective value of certain phenotypes in the polymorphic land snail Cepea nemoralis. Heredity. 5, 125–134.

    PubMed  CAS  Google Scholar 

  • Simms, E.L. and Bucher, M.A. (1996) Pleiotropic effects of flower-color intensity on herbivore performance on Ipomoea purpurea. Evolution 50, 957–963.

    Article  Google Scholar 

  • Traveset, A., Riera, N. and Mas, R.E. (2001) Ecology of fruit-color polymorphism in Myrtus communis and differential effects of birds and mammals on seed germination and seedling growth. J. Ecol. 89, 749–760.

    Article  Google Scholar 

  • Traveset, A. and Willson, M.F. (1998) Ecology of the fruit-colour polymorphism in Rubus spectabilis. Evol. Ecol. 12, 331–345.

    Article  Google Scholar 

  • Whitney, K.D. (2002) Dispersal for distance? Acacia ligulata seeds and meat ants Iridomyrmex viridiaeneus. Austral Ecol. 27, 589–595.

    Article  Google Scholar 

  • Whitney, K.D. (2003) Evolutionary ecology of seed predation and seed dispersal in a polymorphic acacia. Ph.D. Dissertation, University of California, Davis, California.

    Google Scholar 

  • Willson, M.F. (1986) Avian frugivory and seed dispersal in eastern North America. Curr. Ornithol. 3, 223–279.

    Google Scholar 

  • Willson, M.F. (1994) Fruit choices by captive American robins. Condor 96, 494–502.

    Google Scholar 

  • Willson, M.F. and Comet, T.A. (1993) Food choices by northwestern crows: experiments with captive, free-ranging and hand-raised birds. Condor 95, 596–615.

    Google Scholar 

  • Willson, M.F. and O'Dowd, D.J. (1989) Fruit color polymorphism in a bird-dispersed shrub (Rhagodia parabolica) in Australia. Evol. Ecol. 3, 40–50.

    Article  Google Scholar 

  • Willson, M.F. and Whelan, C.J. (1990) The evolution of fruit color in fleshy-fruited plants. Am. Nat. 136, 790–809.

    Article  Google Scholar 

  • Willson, M.F., Irvine, A.K. and Walsh, N.G. (1989) Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons. Biotropica 21, 133–147.

    Article  Google Scholar 

  • Willson, M.F., Rice, B.L. and Westoby, M. (1990) Seed dispersal spectra: a comparison of temperate plant communities. J. Veg. Sci. 1, 547–562.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth D. Whitney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitney, K.D., Lister, C.E. Fruit colour polymorphism in Acacia ligulata: seed and seedling performance, clinal patterns, and chemical variation. Evolutionary Ecology 18, 165–186 (2004). https://doi.org/10.1023/B:EVEC.0000021153.64497.c1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EVEC.0000021153.64497.c1

Navigation