Skip to main content
Log in

Improvement of Sperm Motility of Sex-Reversed Male Rainbow Trout, Oncorhynchus mykiss, by Incubation in High-pH Artificial Seminal Plasma

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Changes in the motility time of spermatozoa collected from the testes and the sperm duct of normal and sex-reversed male (XX) rainbow trout in physiological balanced salt solution were examined after incubation in artificial seminal plasmas of various pHs. Although untreated spermatozoa from the sperm duct retained motility for 60–90 s in the balanced salt solution, the spermatozoa collected from the testes were immotile. During the incubation in artificial seminal plasma of pH 7.0, the spermatozoa from the sperm duct hardly moved, similar to the testicular spermatozoa in the balanced salt solution. By suspending and incubating the testicular spermatozoa in artificial seminal plasma of pH 9.9 for 2 h at 4°C, the percentage of motile spermatozoa increased from 0–5% to 80%. The spermatozoa remained motile for at least 2 min after long-term incubation (12 h). When the full-sib eggs were inseminated with untreated testicular spermatozoa or testicular sperm treated for 2 h at high pH, the percentage survival increased from 5.5% to 53.8% at the eyed stage due to the high-pH treatment. The incubation of the spermatozoa in high-pH artificial seminal plasma improved the motility of the spermatozoa from the testes of the sex-reversed male that had lost its sperm duct. By this treatment, it is possible to markedly increase the mass production efficiency of all-female or all-female triploid sterile progenies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benfey, T.J., P.G. Bosa, N.L. Richardson & E.M. Donaldson. 1988. Effectiveness of a commercial-scale pressure shocking device for producing triploid salmonids. Aquacult. Eng. 7: 146–154.

    Article  Google Scholar 

  • Billard, R. & M.P. Cosson. 1992. Some problems related to the assessment of sperm motility in freshwater fish. J. Exp. Zool. 261: 122–131.

    Article  Google Scholar 

  • Boitano, S. & C. Omoto. 1991. Membrane hyperpolarisation activates trout sperm without an increase in intracellular pH. J. Cell. Sci. 98: 343–349.

    Google Scholar 

  • Bye, V.J. & R.F. Lincoln. 1986. Commercial methods for the control of sexual maturation in rainbow trout (Salmo gairdneri R.). Aquaculture 57: 299–309.

    Article  Google Scholar 

  • Cosson, M.P., J. Cosson, F. André, & R. Billard. 1995. CAMP/AMP relationship in the activation of trout sperm motility: Their interaction in membrane-deprived models and in live spermatozoa. Cell. Mot. Cytoskel. 31: 159–176.

    CAS  Google Scholar 

  • Detweiler, C. & P. Thomas. 1998. Role of ions and ion channels in the regulation of Atlantic croaker sperm motility. J. Exp. Zool. 281: 139–148.

    Article  CAS  Google Scholar 

  • Devlin, R.H., & Y. Nagahama. 2002. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture 208: 191–364.

    Article  CAS  Google Scholar 

  • Donaldson, E.M. & G.A. Hunter. 1982. Sex control in fish with particular reference to salmonids. Can. J. Fish. Aquat. Sci. 39: 99–110.

    CAS  Google Scholar 

  • Donaldson, E.M., R.H. Devlin, I.I. Solar & F. Piferrer. 1993. The reproductive containment of genetically altered salmonids. pp. 113–129. In: J.G. Cloud & G.H. Thorgaard (ed.) Genetic Conservation of Salmonid Fishes, Plenum Press, New York.

    Google Scholar 

  • Hayashi, H., K. Yamamoto, H. Yonekawa & M. Morisawa. 1987. Involvement of tyrosine protein kinase in the initiation of flagellar movement in rainbow trout spermatozoa. J. Biol. Chem. 262: 16692–16698.

    CAS  Google Scholar 

  • Johnstone, R., T.H. Simpson & A.F. Youngson. 1978. Sex reversal in salmonid culture. Aquaculture 13: 115–134.

    Article  CAS  Google Scholar 

  • Johnstone, R., H.A. McLay & M.V. Walsingham. 1991. Production and performance of triploid Atlantic salmon in Scotland. Can. Tech. Rep. Fish. Aquat. Sci. 1789: 15–35.

    Google Scholar 

  • Lahnsteiner, F., B. Berger, T. Weismann & R.A. Patzner. 1996. Motility of spermatozoa of Alburnus alburnus (Cyprinidae) and its relationship to seminal plasma composition and sperm metabolism. Fish. Physiol. Biochem. 15: 167–179.

    Article  CAS  Google Scholar 

  • Lahnsteiner, F., R.A. Patzner & T. Weismann. 1992. Monosaccharids as energy resources during motility of spermatozoa in Leuciscus cephalus (Cyprinidae Teleostei). Fish. Physiol. Biochem. 10: 283–289.

    Article  CAS  Google Scholar 

  • Lahnsteiner, F., R.A. Patzner & T. Weismann. 1993. Energy resources of spermatozoa of the rainbow trout (Oncorhynchus mykiss) (Pisces, Teleostei). Reprod. Nutr. Dev. 33: 349–360.

    CAS  Google Scholar 

  • Lahnsteiner, F., T. Weismann & R.A. Patzner. 1997. Aging processes in semen of the rainbow trout, Oncorhynchus mykiss. Progr. Fish. Cult. 58: 149–159.

    Google Scholar 

  • Lahnsteiner, F., T. Weismann & R.A. Patzner. 1998. Evaluation of the semen quality of the rainbow trout, Oncorhynchus mykiss, by sperm motility, seminal plasma parameters, and spermatozoal metabolism. Aquaculture 163: 163–181.

    Article  CAS  Google Scholar 

  • Lahnsteiner, F., B. Berger & T. Weismann. 1999. Sperm metabolism of the teleost fishes Chalcalburnus chalcoides and Oncorhynchus mykiss and its relation to motility and viability. J. Exp. Zool. 284: 454–465.

    Article  CAS  Google Scholar 

  • Lincoln, R.F. & A.P. Scott. 1983. Production of all-female triploid rainbow trout. Aquaculture 30: 375–380.

    Article  Google Scholar 

  • Lincoln, R.F. & V. Bye. 1984. Triploid rainbows show commercial potential. Fish Farmer 7: 30–32.

    Google Scholar 

  • McGeachy, S.A., T.J. Benfey & G.W. Friars. 1995. Fresh water performance of triploid Atlantic salmon (Salmo salar) in New Brunswick aquaculture. Aquaculture 137: 333–341.

    Article  Google Scholar 

  • Miura, T., K. Yamauchi, H. Takahashi & Y. Nagahama. 1992. The role of hormones in the acquisition of sperm motility in salmonid fish. J. Exp. Zool. 261: 359–363.

    Article  CAS  Google Scholar 

  • Morisawa, M. 1985. Initiation mechanism of sperm motility at sperm motility at spawning in teleosts. Zool. Sci. 2: 605–615.

    CAS  Google Scholar 

  • Morisawa, M. 1987. The process of initiation of sperm motility at spawning and ejaculation. pp. 137–157. In: H. Mohri (ed.) New Horizons in Sperm Cell Research, Japan Science Society Press, Tokyo/Gordon and Breach Science Publishers New York.

    Google Scholar 

  • Morisawa, M. & H. Hayashi. 1985. Phosphorylation of a 15 K axonemal protein is the trigger initiating trout sperm motility. Biochem. Res. 6: 181–184.

    CAS  Google Scholar 

  • Morisawa, S. & M. Morisawa. 1986. Acquisition of potential for sperm motility in rainbow trout and chum salmon. J. Exp. Biol. 126: 89–96.

    CAS  Google Scholar 

  • Morisawa, M. & K. Ishida. 1987. Short-term change in levels of cyclic AMP, adenylate cyclase, and phosphodiesterase during the initiation of sperm motility in rainbow trout. J. Exp. Zool. 242: 199–204.

    Article  CAS  Google Scholar 

  • Nagahama, Y. 1994. Endocrine regulation of gametegenesis in fish. Int. J. Dev. Biol. 38: 217–229.

    CAS  Google Scholar 

  • Nakamura, M. 1994. A study of susceptibility of sex reversal after a single 2-hour treatment of androgen in amago salmon. Fish. Sci. 60: 483–484.

    CAS  Google Scholar 

  • Ojolick, E.J., R. Cusack, T.J. Benfey & S.R. Kerr. 1995. Survival and growth of all-female diploid and triploid rainbow trout (Oncorhynchus mykiss) reared at chronic high temperature. Aquaculture 131: 177–187.

    Article  Google Scholar 

  • Okada, H. 1979. Functional masculinization of genetic females in rainbow trout. Bull. Jpn. Soc. Sci. Fish. 45: 413–419.

    Google Scholar 

  • Ohta, H., S. Kusuda & S. Kudo. 1995. Motility of testicular spermatozoa in the shishamo smelt Spirinchus lanceolatus. Nippon Suisan Gakkaishi 61: 7–12.

    Google Scholar 

  • Ohta, H., K. Ikeda & T. Izawa. 1997. Increases in concentrations of potassium and bicarbonate ions promote acquisition of motility in vitro by Japanese eel spermatozoa. J. Exp. Zool. 277: 171–180.

    Article  CAS  Google Scholar 

  • Ohta, H. & M. Tshuji. 1998. Ionic environment necessary for maintenance of potential motility in the common carp spermatozoa during in vitro storage. Fish. Sci. 64: 547–552.

    CAS  Google Scholar 

  • Ohta, H., T. Unuma, M. Tshuji, M. Yoshioka & M. Kashiwagi. 2001. Effects of bicarbonate ions and pH on acquisition and maintenance of potential for motility in ayu, Plecoglossus altivelis Temminck et Schlegel. Aquac. Res. 32: 385–392.

    Article  CAS  Google Scholar 

  • Olito, C. & I. Brock. 1991. Sex reversal of rainbow trout: Creating an all-female population. Prog. Fish-Culturist 53: 41–44.

    Google Scholar 

  • Piferrer, F., T.J. Benfey & E.M. Donaldson. 1994. Gonadal morphology of normal and sex-reversed triploid and gynogenetic diploid coho salmon (Oncorhynchus kisutch). J. Fish Biol. 45: 541–553.

    Article  Google Scholar 

  • Purdom, C.E. 1983. Genetic engineering by the manipulation of chromosome. Aquaculture 33: 287–300.

    Article  Google Scholar 

  • Quillet, E., B. Chevassus, J-M. Blanc, F. Krieg & D. Chourrout. 1988. Performance of auto and allotriploids in salmonids I. Survival and growth in fresh water farming. Aquat. Living Resour. 1: 29–43.

    Google Scholar 

  • Rurangwa, E., A. Biegniewska, E. Slominska, E.F. Skorkowski & F. Ollevier. 2002. Effect of tributyltin on adenylate content and enzyme activities of teleost sperm: A biochemical approach to study the mechanisms of toxicant reduced spermatozoa motility. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 131: 335–344.

    Article  CAS  Google Scholar 

  • Stoss, J. & W. Holtz. 1983. Successful storage of chilled rainbow trout (Salmo gairdneri) spermatozoa for up to 34 days. Aquaculture 31: 269–274.

    Google Scholar 

  • Takai, H. & M. Morisawa. 1995. Change in intracellular K+ concentration caused by external osmolality change regulates sperm motility of marine and freshwater teleosts. J. Cell. Sci. 108: 1175–1181.

    CAS  Google Scholar 

  • Thorgaard, G.H. 1983. Chromosome set manipulation and sex control in fish. pp. 405–434. In: W.S. Hoar, D.J. Randall & E.M. Donaldson (ed.) Fish Physiology, Volume 9B, Academic Press, New York.

    Google Scholar 

  • Thorgaard, G.H. 1986. Ploidy manipulation and performance. Aquaculture 57: 57–64.

    Article  Google Scholar 

  • Tsumura, K., V.E. Blann & C.A. Lamony. 1991. Progeny test of masculinized female rainbow trout having functional gonoducts. Prog. Fish-Culturist 53: 45–47.

    Google Scholar 

  • Wood, C.M., R.W. Wilson, R.J. Gonzalez, M.L. Patrick, H.L. Bergman, A. Narahara & A.L. Val. 1998. Responses of an Amazonian teleost, the tambagui (Colossoma macropomum), to low pH in extremely soft water. Physiol. Zool. 71: 658–670.

    CAS  Google Scholar 

  • Yamazaki, F. 1983. Sex control and manipulation in fish. Aquaculture 33: 329–354.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, T., Fushiki, S. & Ueno, K. Improvement of Sperm Motility of Sex-Reversed Male Rainbow Trout, Oncorhynchus mykiss, by Incubation in High-pH Artificial Seminal Plasma. Environmental Biology of Fishes 69, 419–425 (2004). https://doi.org/10.1023/B:EBFI.0000022904.35065.e8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EBFI.0000022904.35065.e8

Navigation