Skip to main content
Log in

Bioinformatic analysis of the link between gene composition and expressivity in Saccharomyces cerevisiae and Schizosaccharomyces pombe

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The compositional non-randomness was studied in genes of Saccharomyces cerevisiae and Schizosaccharomyces pombe. In both species, codon usage is well correlated with expressivity (measured as the codon adaptation index). Both species generally display higher nucleotide non-randomness in the group of highly expressed genes than in the lowly expressed genes. The highly expressed genes in both species are furthermore characterized by marked peaks in non-randomness at N=3 upstream of start codons, N=2 downstream of start codons and at N=1 and N=7 downstream of stop codons, indicating that these nucleotides may be key elements in translational regulation. Intragenic variation in codon usage was also observed to be linked to expressivity. It is suggested that the firm link between expressivity and codon usage calls for codon optimization. Based on bioinformatic calculations, examples of proteins are given for which codon optimizations might be relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta-Rivero N., Sanchez J.C. and Morales J. 2002. Improvement of human interferon HUIFNalpha2 and HCV core protein expression levels in Escherichia coli but not of HUIFNalpha8 by using the tRNA(AGA/AGG). Biochem. Biophys. Res. Commun. 296: 1303–1309.

    Google Scholar 

  • Akashi H. 2001. Gene expression and molecular evolution. Curr.Opin. Genet. Dev. 11: 660–666.

    Google Scholar 

  • Batard Y., Hehn A., Nedelkina S., Schalk M., Pallett K., Schaller H. and Werck-Reichhart D. 2000. Increasing expression of P450 and P450-reductase proteins from monocots in heterologous systems. Arch. Biochem. Biophys. 379: 161–169.

    Google Scholar 

  • Bonetti B., Fu L., Moon J. and Bedwell D.M. 1995. The efficiency of translation termination is determined by a synergistic interplay between upstream and downstream sequences in Saccharomyces cerevisiae. J. Mol. Biol. 251: 334–345.

    Google Scholar 

  • Bulmer M. 1987. Coevolution of codon usage and transfer RNA abundance. Nature 325: 728–730.

    Google Scholar 

  • Bulmer M. 1988. Codon usage and intragenic position. J. Theor.Biol. 133: 67–71.

    Google Scholar 

  • Cochran W.G. 1954. Some methods for strengthening the common x2-tests. Biometrics 10: 417–451.

    Google Scholar 

  • Coghlan A. and Wolfe K.H. 2000. Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16: 1131–1145.

    Google Scholar 

  • Comeron J.M. and Aguade M. 1998. An evaluation of measures of synonymous codon usage bias. J. Mol. Evol. 48: 268–274.

    Google Scholar 

  • Demolder J., Fiers W. and Contreras R. 1994. Human interferonbeta, expressed in Saccharomyces cerevisiae, is predominantly directed to the vacuoles. Influence of modified co-expression of secretion factors and chaperones. J. Biotechnol. 32: 179–189.

    Google Scholar 

  • Duret L. and Mouchiroud D. 1999. Expression pattern and, surprisingly, gene length, shape codon usage in Caeenorhabditis, Drosophila and Arabidopsis. Proc. Natl. Acad. Sci. 96: 4482–4487.

    Google Scholar 

  • Duret L. and Mouchiroud D. 2000. Determinants of substitution rates in mammalian genes: expression pattern affects selection intensity but not mutation rate. Mol. Biol. Evol. 17: 68–74.

    Google Scholar 

  • Firoozan M., Grant C.M., Duarte J.A. and Tuite M.F. 1991. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast 7: 173–183.

    Google Scholar 

  • Fuglsang A. 2003. Association of the x nucleotide to codon bias, amino acid usage and expressivity: differences between Bacillus subtilis and Escherichia coli. APMIS 111: 926–930.

    Google Scholar 

  • Fuglsang A. and Engberg J. 2003. Non-randomness in Shine-Dalgarno regions: links to gene characteristics. Biochem. Bopphys.Res. Comm. 302: 296–301.

    Google Scholar 

  • Gouy M. and Gautier G. 1982. Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res. 10: 7055–7074.

    Google Scholar 

  • Hu X., Shi Q., Yang T. and Jackowski G. 1996. Specific replacement of consecutive AGG codons results in high-level expression of human cardiac troponin T in Escherichia coli. Protein Expr. Purif. 7: 289–293.

    Google Scholar 

  • Ikemura T. 1985. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2: 13–34.

    Google Scholar 

  • Ikemura T. and Ozeki H. 1983. Codon usage and transfer RNA contents: organism-specific codon-choice patterns in reference to the isoacceptor contents. Cold Spring Harb. Symp. Quant. Biol. 47: 1087–1097.

    Google Scholar 

  • Kalman M., Cserpan I., Bajszar G., Dobi A., Horvath E., Pazman C. and Simoncsits A. 1990. Synthesis of a gene for human serum albumin and its expression in Saccharomyces cerevisiae.Nucleic Acids Res. 18: 6075–6081.

    Google Scholar 

  • Kanaya S., Yamada Y., Kinouchi M., Kudo Y. and Ikemura T. 2001.Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CGdinucleotide usage as assessed by multivariate analysis. J. Mol Evol. 53: 290–298.

    Google Scholar 

  • Kozak M. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 2341999 187–208.

    Google Scholar 

  • Kozak M. 2002. Publishing the limits of the scanning mechanism for initiation of translation. Gene 299: 1–34.

    Google Scholar 

  • Liljenstrom H. and von Heijne G. 1987. Translation rate modification by preferential codon usage: intragenic position effects. J.Theor. Biol. 124: 43–55.

    Google Scholar 

  • Looman A.C. and Kuivenhoven J.A. 1993. Influence of the three nucleotides upstream of the initiation codon on expression of the Escherichia coli LacZ gene in Saccharomyces cerevisiae.Nucleic Acids Res. 21: 4268–4271.

    Google Scholar 

  • Looman A.C., Laude M. and Stahl U. 1991. Influence of the codon following the initiation codon on the expression of the lacZ gene in Saccharomyces cerevisiae. Yeast 7: 157–165.

    Google Scholar 

  • Mottagui-Tabar S., Tuite M.F. and Isaksson L.A. 1998. The influence of 5' codon context on translation termination in Saccharomyces cerevisiae. Eur. J. Biochem. 257: 249–254.

    Google Scholar 

  • Namy O., Hatin I. and Rousset J.P. 2000. Impact of the six nucleotides downstream of the stop codon on translation termination.EMBO Rep. 2: 787–793.

    Google Scholar 

  • Park S.J., Lee S.K. and Lee B.J. 2002. Effect of tandem rare codon substitution and vector-host combinations on the expression of the EBV gp110 C-terminal domain in Escherichia coli. Protein Expr. Purif. 24: 470–480.

    Google Scholar 

  • Percudani R. and Ottonello S. 1999. Selection at the wobble position of codons read by the same tRNA in Saccharomyces cerevisiae.Mol. Biol. Evol. 16: 1752–1762.

    Google Scholar 

  • Sharp P.M. and Bulmer M. 1988. Selective differences among translation termination codons. Gene 63: 141–145.

    Google Scholar 

  • Sharp P.M., Cowe E., Higgins D.G., Shields D.C., Wolfe K.H. and Wright F. 1988. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 16: 8207–8211.

    Google Scholar 

  • Sharp P.M. and Li W.-H. 1987. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15: 1281–1295.

    Google Scholar 

  • Shields D.C. and Sharp P.M. 1987. Synonymous codon usage in Bacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res. 19: 8023–40.

    Google Scholar 

  • Sinclair G. and Choy F.Y. 2004. Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr. Purif. 26: 96–105.

    Google Scholar 

  • Slusher L.B., Gillman E.C., Martin N.C. and Hopper A.K. 1991.mRNA leader length and initiation codon context determine alternative AUG selection for the yeast gene MOD5. Proc. Natl.Acad. Sci. USA. 88: 9789–9793.

    Google Scholar 

  • Stenstrom C.M., Holmgren E. and Isaksson L.A. 2001a. Cooperative effects by the initiation codon and its flanking regions on translation initiation. Gene 273: 259–265.

    Google Scholar 

  • Stenstrom C.M., Jin H., Major L.L., Tate W.P. and Isaksson L.A. 2001b. Codon bias at the 3'-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli.Gene 263: 273–284.

    Google Scholar 

  • Thim L., Hansen M.T. and Sorensen A.A. 1987. Secretion of human insulin by a transformed yeast cell. FEBS Lett. 212: 307–312.

    Google Scholar 

  • Tokunaga T., Iwai S., Gomi H., Kodama K., Ohtsuka E., Ikehara M., Chisaka O. and Matsubara K. 1985. Expression of a synthetic human growth hormone gene in yeast. Gene 39: 117–120.

    Google Scholar 

  • Wieczorke R., Dlugai S., Krampe S. and Boles E. 2003. Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell Physiol Biochem. 13: 123–134.

    Google Scholar 

  • Woo J.H., Liu Y.Y., Mathias A., Stavrou S., Wang Z., Thompson J.and Neville Jr. D.M. 2002. Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris. Protein Expr. Purif. 25: 270–282.

    Google Scholar 

  • Wright F. 1990. The 'effective number of codons' used in a gene. Gene 87: 23–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuglsang, A. Bioinformatic analysis of the link between gene composition and expressivity in Saccharomyces cerevisiae and Schizosaccharomyces pombe . Antonie Van Leeuwenhoek 86, 135–147 (2004). https://doi.org/10.1023/B:ANTO.0000036119.00001.3b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ANTO.0000036119.00001.3b

Navigation