Skip to main content
Log in

The Isoperimetric Problem in Spherical Cylinders

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

The classical isoperimetric problem for volumes is solved in ℝ×n(1). Minimizers are shown to be invariant under the group O(n) acting standardly on \({\mathbb{S}}\) n, via a symmetrization argument, and are then classified. Solutions are found among two (one-parameter) families: balls and sections of the form [a, b] ×\({\mathbb{S}}\) n. It is shown that the minimizers may be of both types. For n= 2, it is shown that the transition between the two families occurs exactly once. Some results for general n are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Almgren, Jr., F. J.: Some interior regularity theorems for minimal surfaces and an extension of Bernstein's problem, Ann. Math. 84 (1966), 277–292.

    Google Scholar 

  2. Almren, Jr., F. J.: Existence and regularity almost everywhere of solutions to elliptic variationa problems with constraints, Mem. Amer. Math. Soc. 4 (165), (1976).

    Google Scholar 

  3. Almgren, Jr., F. J.: Spherical symmetrization, Rend. Circ. Mat. Palermo (2) Suppl.(1987), 11–25, in Proceedings of the International Workshop on Integral Functionals in the Calculus of Variations (Trieste, 1985).

  4. Benjamin, I. and Cao, J.: A new isoperimetric comparison theorem for surfaces of variable curvature, Duke Math. J. 85 (1996), 359–396.

    Google Scholar 

  5. Barbosa, J. L., do Carmo, M. and Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannians manifolds, Math. Z. 197 (1988), 123–138.

    Google Scholar 

  6. Bombieri, E. and Giusti, E.: Harnack's inequality for elliptic differential equations on minimal surfaces, Invent. Math. 15 (1972), 24–46.

    Google Scholar 

  7. Bavard, C. and Pansu, P.: Sur le volume minimal de R 2, Ann. Sci. École Norm. Sup 19 (4) (1986), 479–490.

    Google Scholar 

  8. Burago, Yu. D. and Zalgaller, V. A.: Geometric Inequalities, Springer-Verlag, New York, 1988.

    Google Scholar 

  9. Federer, H.: Geometric Measure Theory, Springer-Verlag, New York, 1969.

    Google Scholar 

  10. Gallot, S.: Inégalités isopérimétriques et analytiques sur les variétés rimanniennes, Astérisque (1988), No. 163–164, 31–91.

    Google Scholar 

  11. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Monogr. Math. 80, Birkhäuser, Boston, 1984.

    Google Scholar 

  12. Gonzalez, E., Massari, U. and Tamanini, I.: On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J. 32 (1983), 25–37.

    Google Scholar 

  13. Hsiang, W.-T. and Hsiang, W.-Y.: On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces, Invent. Math. 85 (1989), 39–58.

    Google Scholar 

  14. Hsiang, W.-Y.: Isoperimetric regions and soap bubbles, In: B. Lawson Jr. and K. Tenenblat (eds), Differential Geometry: A symposium in honor of Manfredo do Carmo, Pitman Monogr. Surveys Pure Appl. Math. 52, Longman Sci. Tech., Harlow, 1991, pp. 229–240.

    Google Scholar 

  15. Hsiang, W.-Y.: On soap bubbles and isoperimetric in noncompact symmetric spaces, I, T ohoku Mat. J. 44 (1992), 151–175.

    Google Scholar 

  16. Johnson, D. and Morgan, F.: Some sharp isoperimetric theorems for Riemannian manifolds, Indiana Univ. Math. J. 49 (2000), 1017–1041.

    Google Scholar 

  17. Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Math. 1150, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  18. Lieb, E. H. and Loss, M.: Analysis, Grad. Stud. Math. 14, Amer. Math. Soc., Providence, RI, 1997.

    Google Scholar 

  19. Massari, U.: Esistenza and regolarit` a delle ipersuperfici di curvatura media assegnata in R n, Arch. Rat. Mech. Anal. 55 (1974), 357–382.

    Google Scholar 

  20. Morgan, F.: Clusters minimizing area plus length of singular curves, Math. Ann. 299 (1994), 697–714.

    Google Scholar 

  21. Osserman, R.: The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182–1238.

    Google Scholar 

  22. Pansu, P.: Sur la régularité duprofil isopérimétrique des surfaces rimeanniennes compactes, Ann. Inst. Fourier 48 (1998), 247–264.

    Google Scholar 

  23. Pansu, P.: Profil isopérimétrique, métriques périodiques et formes d'équilibre des cristaux, (French) [Isoperimetric profile, periodic metrics and equilibrium shapes of crystals.] ESAIM Control Optim. Calc. Var. 4 (1999), 631–665 (electronic).

    Google Scholar 

  24. Pedrosa, R. H. L.: Minimal partial rearrangements with applications to symmetry properties of optimal composite membranes, Preprint, 2004.

  25. Pedrosa, R. H. L.: Rearrangements and symmetrization in Euclidean and Riemannian spaces, in preparation.

  26. Pedrosa, R. H. L. and Ritoré, M.: Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems, Indiana Univ. Math. J. 48 (1999), 1357–1394.

    Google Scholar 

  27. Pittet, Ch.: The isoperimetric profile of homogeneous Riemannian manifolds'. J. Differential Geom. 54 (2000), 255–302.

    Google Scholar 

  28. Ritoré, M.: Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces, Comm. Anal. Geom. 9 (2001), 1093–1138.

    Google Scholar 

  29. Ritoré, M. and Ros, A.: Stable constant mean curvature tori and the isoperimetric problem in three space forms, Comm. Math. Helv. 67 (1992), 293–305.

    Google Scholar 

  30. Ritoré, M. and Ros, A.: The space of stable constant mean curvature surfaces and index one minimal surfaces embedded in flat three manifolds, Trans. Amer. Math. Soc. 348 (1996), 391–410.

    Google Scholar 

  31. Ritoré, M. and Ros, A.: Some updates on isoperimetric problems, Math. Intelligencer 24 (2002), 9–14.

    Google Scholar 

  32. Ros, A.: The isoperimetric and Willmore problems. In: Global Differential Geometry: The Mathematical Legacy of Alfred Gray, Bilbao, 2000, Contemp. Math. 288, Amer. Math. Soc., Providence, RI, 2001, pp. 149–161.

    Google Scholar 

  33. Ros, A.: The Isoperimetric problem. Lecture series at the Clay Mathematics Institute Summer School on the Global Theory of Minimal Surfaces, Summer 2001, MSRI, Berkeley, California.

    Google Scholar 

  34. Talenti, G.: The standard isoperimetric theorem. In: P. M. Gruber and J. M. Wills (eds), Handbook of Convex Geometry, Vol. A, North-Holland, Amsterdam, 1993, pp. 73–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrosa, R.H.L. The Isoperimetric Problem in Spherical Cylinders. Annals of Global Analysis and Geometry 26, 333–354 (2004). https://doi.org/10.1023/B:AGAG.0000047528.20962.e2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGAG.0000047528.20962.e2

Navigation