Skip to main content
Log in

Reaction Mechanisms of Lean-Burn Hydrocarbon SCR over Zeolite Catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Acid zeolites loaded with transition metals have been intensively investigated as catalysts for selective catalytic reduction of NO x using hydrocarbons. Detailed insight into reaction mechanisms and zeolite effects was reached through experimentation in minireactors with simulated exhaust gas and compressed zeolite powder, detailed reaction product analysis and in situ spectroscopic investigations. Irrespective of the nature of the transition metal (Fe, Ag, Ce, Cu, Co, Pd, Pt, In, Sn, Mn) and of the zeolite type (MFI, FER, MOR), a unified mechanistic picture emerges from the vast amount of literature data. Water plays a key role in this catalytic chemistry. Reaction mechanisms in the presence and absence of water are different. Evidence for the involvement of NO2 as a reaction intermediate in NO reduction is provided, and the means to generate NO oxidation activity in the catalyst discussed. It is explained how organo nitrogen compounds are involved in the pairing of nitrogen atoms. Hydrocarbon SCR can be achieved in two steps, comprising the trapping of NO x by reaction with adsorbed hydrocarbons at low temperatures followed by conversion of the organo nitrogen compounds into nitrogen at higher temperatures. Molecular sieving properties of zeolites can be exploited in order to suppress undesired oxidation of the hydrocarbons with oxygen. The dual pore concept for achieving NO oxidation and NO2 reduction in small and large pores, respectively, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Held, A. Ko¨nig, T. Richter and L. Puppe, SAE Trans., Section 4 No. 900 496 (1990) 209.

  2. W. Held and A. Ko¨nig, German Patent Application 3,642,018, assigned to Volkswagen AG, 25 June 1987.

  3. M. Iwamoto, H. Yahiro, Y. Yu-u, S. Shundo and N. Mizuno, Shokubai 32 (1990) 430.

  4. Y. Traa, B. Burger and J. Weitkamp, Micropor. Mesopor. Mater. 30 (1999) 3.

    Google Scholar 

  5. K. Masuda, K. Shinoda, T. Kato and K. Tsujimura, Appl. Catal. B 15 (1998) 29.

    Google Scholar 

  6. <http://www.iza-online.org>

  7. P. Degobert, Automobiles and Pollution (Institut Franc¸ ais du Pe´ trole Publications, E´ ditions Technip, Paris, 1995).

    Google Scholar 

  8. N.W. Cant and I.O.Y. Liu, Catal. Today 63 (2000) 133.

  9. C. Yokoyama and M. Misono, J. Catal. 150 (1994) 9.

  10. L.F. Cordoba, M. Flytzani-Stephanopoulos and C. Montes de Correa, Appl. Catal. B 33 (2001) 25.

    Google Scholar 

  11. K. Yogo, M. Umeno, H. Watanabe and E. Kikuchi, Catal. Lett. 19 (1993) 131.

  12. H. Hamada, Y. Kintaichi, M. Sasaki and T. Ito, Appl. Catal. 70 (1991) L15.

  13. J.A. Martens, A. Cauvel, A. Francis, C. Hermans, F. Jayat, M. Remy, M. Keung, J. Lievens and P.A. Jacobs, Angew. Chem. Int. Ed. Engl. 37 (1998) 1901.

  14. Z. Li and M. Flytzani-Stephanopoulos, J. Catal. 182 (1999) 313

    Google Scholar 

  15. H. Hamada, Y. Kintaichi, T. Yoshinari, M. Tabata, M. Sasaki and T. Ito, Catal. Today 17 (1993) 111.

    Google Scholar 

  16. H. Hamada, Y. Kintaichi, M. Sasaki and T. Ito, Appl. Catal. 64 (1990) L1.

  17. M. Sasaki, H. Hamada, Y. Kintaichi and T. Ito, Catal. Lett. 15 (1992) 297.

  18. K. Hadjiivanov, J. Saussey, J.L. Freysz and J.C. Lavalley, Catal. Lett. 52 (1998) 52

    Google Scholar 

  19. X. Wang, H.-Y. Chen and W.M.H. Sachtler, J. Catal. 197 (2001) 281.

    Google Scholar 

  20. A. Satsuma, K. Yamada, K. Sato, K. Shimizu, T. Hattori and Y. Murakami, Catal. Lett. 45 (1997) 267.

    Google Scholar 

  21. E. Kikuchi, M. Ogura, I. Terasaki and Y. Goto, J. Catal. 161 (1996) 465.

  22. J.A. Martens, A. Cauvel, F. Jayat, S. Vergne and E. Jobson, Appl. Catal. B 29 (2001) 299.

    Google Scholar 

  23. M. Misono, Y. Hirao and C. Yokoyama, Catal. Today 38 (1997) 157.

  24. K. Krishna, G.B.F. Seijger, C.M. van den Bleek, H. van Bekkum and H.P.A. Calis, Chem. Commun. (2002) 948.

  25. R. Giles, N.W. Cant, M. Ko¨ gel, T. Turek and D.L. Trimm, Appl. Catal. B 25 (2000) 75.

  26. H.-Y. Chen, El-M. El-Malki, X. Wang, R.A. van Santen and W.M.H. Sachtler, J. Mol. Catal. A 162 (2000) 159.

    Google Scholar 

  27. P.E.M. Siegbahn, R.H. Crabtree, J. Am. Chem. Soc. 119 (1997) 3103.

    Google Scholar 

  28. R. Brosius, D. Habermacher, J. A. Martens, L. Vradman, M. Herskowitz, L. Capek, Z. Sobalik, J. Dydeyek, B. Wichterbra, V. Tokarova, and O. Gonsiorova, Topks, Catal. accepted for publication.

  29. H.-Y. Chen and W.M.H. Sachtler, Catal. Today 42 (1998) 73.

    Google Scholar 

  30. H.-Y. Chen, T. Voskoboinikov and W.M.H. Sachtler, J. Catal. 180 (1998) 171.

    Google Scholar 

  31. H.-Y. Chen, T. Voskoboinikov and W.M.H. Sachtler, Catal. Today 54 (1999) 483.

    Google Scholar 

  32. H.-Y. Chen, T. Voskoboinikov and W.M.H. Sachtler, J. Catal. 186 (1999) 91.

    Google Scholar 

  33. T. Gerlach, F.-W. Schu¨ tze and M. Baerns, J. Catal. 185 (1999) 131.

    Google Scholar 

  34. C. Sedlmair, B. Gil, K. Seshan, A. Jentys and J.A. Lercher, Phys. Chem. Chem. Phys. 5 (2003) 1897.

    Google Scholar 

  35. I. Halasz and A. Brenner, Catal. Lett. 51 (1998) 195.

  36. C. Yokoyama and M. Misono, J. Catal. 160 (1996) 95.

  37. D.B. Lukyanov, E.A. Lombardo, G. Sill, J.L. d'Itri and W.K. Hall, J. Catal. 163 (1996) 447.

    Google Scholar 

  38. A.Y. Stakheev, C.W. Lee, S.J. Park and P.J. Chong, Catal. Lett. 38 (1996) 271.

    Google Scholar 

  39. F. Witzel, G.A. Sill and W.K. Hall, J. Catal. 149 (1994) 229.

  40. T. Beutel, B.J. Adelman, G.D. Lei and W.M.H. Sachtler, Catal. Lett. 32 (1995) 83.

    Google Scholar 

  41. T. Tanaka, T. Okuhara and M. Misono, Appl. Catal. B 4 (1994) L1.

  42. T. Nanba, A. Obuchi, H. Izumi, Y. Sugiura, J. Xu, J. Uchisawa and S. Kushiyama, J. Chem. Soc. Chem. Commun. (2001) 173.

  43. A. Satsuma, T. Enjoji, K. Shimizu, K. Sato, H. Yoshida and T. Hattori, J. Chem. Soc. Faraday Trans. 94 (1998) 301.

    Google Scholar 

  44. D.L. Vanoppen, D.E. De Vos, M.J. Genet, P.G. Rouxhet and P.A. Jacobs, Angew. Chem. Int. Ed. Engl. 34 (1995) 560.

    Google Scholar 

  45. A.N. Il'ichev, V.A. Matyshak, V.N. Korchak and Yu. B. Yan, Kinet. Catal. 41 (2000) 706.

    Google Scholar 

  46. T. Gerlach and M. Baerns, Chem. Engin. Sci. 54 (1999) 4379.

    Google Scholar 

  47. T. Nanba, A. Obuchi, Y. Sugiura, C. Kouno, J. Uchisawa and S. Kushiyama, J. Catal. 211 (2002) 53.

    Google Scholar 

  48. N.W. Cant, A.D. Cowan, I.O.Y. Liu and A. Satsuma, Catal. Today 54 (1999) 473.

    Google Scholar 

  49. S.N. Eğe,Organic Chemistry: Structure and Reactivity (D.C. Heath and Company, Toronto, 1994) 849.

    Google Scholar 

  50. M. Kim, I.-S. Nam and Y.G. Kim, J. Chem. Soc. Chem. Commun. (1998) 1771.

  51. I.C. Hwang, D.H. Kim and S.I. Woo, Catal. Lett. 42 (1996) 177.

  52. A. Shichi, Y. Kawamura, A. Satsuma and T. Hattori, Stud. Surf. Sci. Catal. 135 (2001) 172.

    Google Scholar 

  53. S. Boulard, P. Gilot, D. Habermacher, R. Brosius and J.A. Martins, Topics Catal. accepted for publication.

  54. A. Shichi, K. Katagi, A. Satsuma and T. Hattori, Appl. Catal. B 24 (2000) 97.

    Google Scholar 

  55. A. Shichi, A. Satsuma and T. Hattori, Appl. Catal. A 207 (2001) 315.

    Google Scholar 

  56. A. Goossens, E.J.P. Feijen, G. Verhoeven, B.H. Wouters, P.J. Grobet, P.A. Jacobs and J.A. Martens, Micropor. Mesopor. Mater. 35 (2000) 555.

    Google Scholar 

  57. J. Connerton, R.W. Joyner and M. Stockenhuber, J. Chem. Soc. Chem. Commun. (1997) 185.

  58. B. Coq, D. Tachon, F. Figue´ ras, G. Mabilon and M. Prigent, Catal. Lett. 35 (1995) 183.

  59. M. Deeba, J. Feeley and R. Farrauto, Appl. Catal. A 188 (1999) 219.

    Google Scholar 

  60. C. Knapp, A. Obuchi, J.O. Uchisawa, S. Kushiyama and Pedro Avila, Micropor. Mesopor. Mater. 31 (1999) 23.

    Google Scholar 

  61. H.-Y. Chen, X. Wang and W.M.H. Sachtler, Appl. Catal. A 194 (2000) 159.

    Google Scholar 

  62. D.W. Breck, Zeolite Molecular Sieves (Wiley, New York, 1974).

    Google Scholar 

  63. K. Otsuka, R. Takahashi and I. Yamanaka, J. Catal. 185 (1999) 182.R. Brosius and J.A. Martens/Reaction mechanisms of lean-burn hydrocarbon 130

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan A. Martens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brosius, R., Martens, J.A. Reaction Mechanisms of Lean-Burn Hydrocarbon SCR over Zeolite Catalysts. Topics in Catalysis 28, 119–130 (2004). https://doi.org/10.1023/B:TOCA.0000024341.19779.82

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TOCA.0000024341.19779.82

Navigation