Skip to main content
Log in

Apoptosis: Genetically Programmed Cell Death

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Extensively and successfully studied problems of programmed cell death are considered. Recent evidence on apoptosis genes is presented, including the bcl-2 family and other genes with similar functions. A scheme of pathways of the main apoptosis mechanism is constructed. Examples of associations of apoptosis and diseases are presented in a special section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Popov, L.S. and Korochkin, L.I., A Strategy for Constructing and Using Immortal Cells, Ontogenez (Moscow), 2004, vol. 35,no. 1, pp. 1-11.

    Google Scholar 

  2. Korochkin, L.I., Vvedenie v genetiku razvitiya (Introduction to Developmental Genetics), Moscow: Nauka, 1999.

    Google Scholar 

  3. Osborn, B.A. and Schwartz, L.M., Essential Genes that Regulate Apoptosis, Trends Cell Biol., 1994, vol. 4, pp. 394-398.

    Google Scholar 

  4. Steller, H., Apoptosis, Science, 1995, vol. 267, pp. 1443-1449.

    Google Scholar 

  5. Peitch, M., Polzaz, B., Stephan, H., et al., Characterization of the Endogenous Deoxyribonuclease Involved in Nuclear DNA Degradation during Apoptosis (Programmed Cell Death), EMBO J., 1993, vol. 12, pp. 371-377.

    Google Scholar 

  6. O'Connor, L., Huang, D.C., O'Reilly, L.A., et al., Apoptosis and Cell Division, Curr. Opin. Cell. Biol., 2000, vol. 12, pp. 257-263.

    Google Scholar 

  7. Rustin, P., Mitochondria, from Cell Death to Proliferation, Nat. Genet., 2002, vol. 30, pp. 352-353.

    Google Scholar 

  8. Sashchenko, L.P., Luk'yanova, T.I., Mirkina, I.I., et al., Cytotoxic Proteins of LAK Cells Induce Apoptotic and Necrotic Processes in Target Cells, Dokl. Akad. Nauk, 1998, vol. 360,no. 2, pp. 278-280.

    Google Scholar 

  9. Sashchenko, L.P., Dukhanina, E.A., Luk'yanova, T.I., et al., Molecular Mechanisms of Cytological Processes Induced by Human LAK Cells, Mol. Biol. (Moscow), 2000, vol. 34,no. 5, pp. 816-820.

    Google Scholar 

  10. Goldstein, P., Controlling Cell Death, Science, 1997, vol. 275, pp. 1031-1037.

    Google Scholar 

  11. Joza, N., Kroenier, G., and Penninger, J.M., Genetic Analysis of the Mammalian Cell Death Mashinery, Trends Genet., 2002, vol. 18, pp. 142-149.

    Google Scholar 

  12. Lin, Q.A. and Hengarther, M.O., The Molecular Mechanism of Programmed Cell Death in C. elegans, Ann. N. Y. Acad. Sci., 1999, vol. 887, pp. 92-104.

    Google Scholar 

  13. Shwartz, L.M. and Milligan, C.E., Cold Thoughts of Death: The Role of ICE Proteases in Neuronal Cell Death, Trends Neurosci., 1996, vol. 19, pp. 555-562.

    Google Scholar 

  14. Clem, R.J. and Miller, L.K., Control of Programmed Cell Death by the Baculovirus Genes p35 and iap, Mol. Cell. Biol., 1994, vol. 14, pp. 5212-5222.

    Google Scholar 

  15. Goyal, L., McCall, K., Agapite, J., et al., Induction of Apoptosis by Drosophila reaper, hid and grim through Inhibition of IAP Function, EMBO J., 2000, vol. 19, pp. 589-597.

    Google Scholar 

  16. Yang, E., Zha, J., Jockel, J., et al., Bad, a Heterodimeric Partner for BCL-XL and BCL-2, Displaces Bax and Promotes Cell Death, Cell (Cambridge, Mass.), 1995, vol. 80, pp. 285-291.

    Google Scholar 

  17. Theodarakis, P., D'sa-Eipper, C., Subramanian, T., et al., Unmasking of Proliferation-Restraining Activity of the Anti-Apoptosis, Oncogene, 1996, vol. 12,no. 8, pp. 1707-1713.

    Google Scholar 

  18. Kuida, K., Zheng, T.S., Na, S., et al., Decreased Apoptosis in the Brain and Premature Lethality in CPP32-Deficient Mice, Nature, 1996, vol. 384, pp. 368-372.

    Google Scholar 

  19. Lin, E., Orlofsky, A., and Wang, H.G., A1, a BCL-2 Family Member Prolongs Cell Survival and Permits Myeloid Differentiation, Blood, 1996, vol. 87,no. 3, pp. 983-992.

    Google Scholar 

  20. Gillet, G., Guerin, M., Tremblean, A., et al., A bcl-2-Related Gene Is Activated in Avian Cells Transformed by the Rous Sarcoma Virus, EMBO J., 1995, vol. 14,no. 7, p. 207.

    Google Scholar 

  21. D'Sa-Eipper, C., Subramanian, G., and Chinnadurai, G., Bfl-1, a BCL-2 Homologue, Suppresses p53-Induced Apoptosis and Exhibits Potent Cooperative Transforming Activity, Cancer Res., 1996, vol. 56,no. 17, pp. 3879-3882.

    Google Scholar 

  22. Han, J., Sabbatini, P., Perez, L., et al., The E1B19K Protein Blocks Apoptosis by Interacting with and Inhibiting the p53-Inducible and Death-Promoting Bax, Genes Dev., 1996, vol. 10,no. 10, pp. 461-477.

    Google Scholar 

  23. Takahashi, A., Alnemri, E.S., Lazebnik, Y.A., et al., Cleavage of Lamin a by Mch2α but not CPP32: Multiple Interleukin 1β-Converting Enzyme-Related Proteases with Distinct Substrate Recognition Properties Are Active in Apoptosis, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 8395-8400.

    Google Scholar 

  24. Wang, H.-G., Mijashika, T., Takajama, S., et al., Apoptosis Regulation by Interaction of Bcl-2 Protein and Raf-1 Kinase, Oncogene, 1994, vol. 9, pp. 2751-2756.

    Google Scholar 

  25. Radvanji, L.G., Shi, Y., Vaziri, H., et al., CD28 Costimulation Inhibits TCR-Induced Apoptosis during a Primary T-Cell Response, J. Immunol., 1996, vol. 156,no. 5, pp. 1788-1798.

    Google Scholar 

  26. Nagata, S. and Golstein, P., The Fas Death Factor, Science, 1995, vol. 267, pp. 1449-1456.

    Google Scholar 

  27. Kelley, L., Green, W., Hicks, G., et al., Apoptosis in Erythroid Progenitors Deprived of Erythropoietin Occurs during the G1 and S Phases of the Cell Cycle without Growth Arrest or Stabilization of Wild-Type p53, Mol. Cell. Biol., 1994, vol. 14,no. 6, pp. 4183-4192.

    Google Scholar 

  28. Nakamura, Y. and Nakanchi, H., A Truncated Erythropoietin Receptor as a Dominant Negative Regulator for Cell Growth and Prevention of Apoptosis, Science, 1994, vol. 264, p. 588.

    Google Scholar 

  29. Orban, P.S. and Schrader, J., Antibodies to an Autostimulatory Growth Factor (IL-2) or Its Receptor Induce Death of Leukemogenic Cells, J. Immunol., 1996, vol. 156, pp. 3334-3341.

    Google Scholar 

  30. Yang, B.-C., Chang, H.-M., and Wang, Y.-S., Transient Induction of Apoptosis in Serum-Started Glioma Cells by Insulin and IGF-1, Biochim. Biophys. Acta, 1996, vol. 1314, pp. 83-92.

    Google Scholar 

  31. D'Mello, S.R., Galli, C., Ciotti, T., et al., Induction of Apoptosis in Cerebellar Granule Neurons by Low Potassium: Inhibition of Death by Insulin-like Growth Factor 1 and cAMP, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 10 989-10 993.

    Google Scholar 

  32. Minshall, C., Arkins, S., Frend, G.G., et al., Requirement for Phosphatidyl Hemopoietic Progenitors against Apoptosis Dependent upon the Extracellular Survival Factor, J. Immunol., 1996, vol. 156,no. 2, pp. 939-947.

    Google Scholar 

  33. Tanaka, S. and Wands, J., Insulin Receptor Substrate 1 Overexpression in Human Hepatocellular Carcinoma Cells Prevents Transforming Growth Factor β1-Induced Apoptosis, Cancer Res., 1996, vol. 56,no. 16, pp. 3391-3394.

    Google Scholar 

  34. Uren, A.G., Pakush, M., Howkins, Ch., et al., Cloning and Expression of Apoptosis Inhibitory Protein Homologs That Function to Inhibit Apoptosis and/or Bind Tumor Necrosis Factor Receptor-Associated Factors, Proc. Natl. Acad. Sci. USA, 1996, vol. 93,no. 12, pp. 4974-4978.

    Google Scholar 

  35. Alarson, R.M., Rupnow, B.A., Graeber, T.G., et al., Modulation of c-myc Activity and Apoptosis in Vivo, Cancer Res., 1996, vol. 56,no. 18, pp. 4315-4319.

    Google Scholar 

  36. Yokonchi, Y., Sakijama, J.-I., Kameda, I., et al., BVP-2/-4 Mediate Programmed Cell Death in Chicken Limp Buds, Development (Cambridge, UK), 1996, vol. 122,no. 7, pp. 3725-3734.

    Google Scholar 

  37. Lin, J., Lee, M.-O., Wang, G., et al., Retinoic Acid Receptor β Mediates the Growth-Inhibitory Effect of Retinoic Acid by Promoting in Human Breast Cancer Cells, Mol. Cell. Biol., 1996, vol. 16,no. 3, pp. 1138-1149.

    Google Scholar 

  38. Mollerean, B., Deckert, M., and Olivier, D., CD2-Induced Apoptosis in Activated Human Peripheral T Cells, J. Immunol., 1996, vol. 156,no. 5, pp. 3184-3190.

    Google Scholar 

  39. Lee, S.-H., Fujita, N., Mashima, T., et al., Interleukin-7 Inhibits of Mouse Malignant T-Lymphoma Cells by Suppressing the CPP32-Like Protease Activation and Inducing the bcl-2 Expression, Oncogene, 1996, vol. 13,no. 5, pp. 2131-2140.

    Google Scholar 

  40. Fang, G., Ma, X., and Kren, B.T., The Retinoblastoma Gene Product Inhibits TGF-Gb1-Induced Apoptosis in Primary Rat Hepatocytes and Human HuH-7 Hepatoma Cells, Oncogene, 1996, vol. 12, pp. 1909-1919.

    Google Scholar 

  41. Smith, J., Fowkes, G., Olmith, C., et al., Programmed Cell Death in Dystrophic (Mdx) Muscle, The 3rd Euro-conf. on Apoptosis, Cuence, Spain, 1995, poster 69.

  42. Bortner, D.M. and Rosenberg, M.P., Overexpression of Cyclin A in the Mammary Glands of Transgenic Mice Results in the Induction of Nuclear Abnormalities and Increased Apoptosis, Cell Growth Diff., 1995, vol. 6, pp. 1579-1589.

    Google Scholar 

  43. Roy, N., Mahodevan, M.S., McLean, M., et al., The Gene for Neuronal Apoptosis Inhibitory Protein Is Partially Deleted in Individuals with Spinal Muscular Atrophy, Cell (Cambridge, Mass.), 1995, vol. 80,no. 1, pp. 167-178.

    Google Scholar 

  44. Mercer, E.A., Korhonen, L., Skoglosa, Y., et al., NAIP Interacts with Hippocalcin and Protects Neurons against Calcium-Induced Cell Death through Caspase-3 Dependent-Independent Pathways, EMBO J., 2000, vol. 19, pp. 3597-3607.

    Google Scholar 

  45. Liston, P., Roy, K., Tamai, K., et al., Suppression of Apoptosis in Mammalian Cells by NAIP and a Related Family of IAP Genes, Nature, 1996, vol. 379, pp. 349-353.

    Google Scholar 

  46. Stahlban, A., Conference “Cell-Signaling and Cancer Treatment,” Telfs-Buchen, Austria, 1997.

    Google Scholar 

  47. Rothe, M., Pan, M.G., Henzel, W.J., et al., The TNFR2-TRAF Signaling Complex Contains Two Novel Proteins Related to Baculoviral Inhibitor of Apoptosis Proteins, Cell (Cambridge, Mass.), 1995, vol. 83, p. 1243-1252.

    Google Scholar 

  48. Ambrosini, G., Adida, C., and Altieri, D.C., A Novel Antiapoptosis Gene surviving Expressed in Cancer and Lymphoma, Nat. Med., 1997, vol. 3, pp. 917-921.

    Google Scholar 

  49. Hauser, H.P., Bardroff, M., and Pyrowolakis, G., A Giant Ubiquitin-Conjugating Enzyme to IAP Apoptosis Inhibitors, J. Cell Biol., 1998, vol. 141, pp. 1415-1422.

    Google Scholar 

  50. Lin, J.H., Deng, G., Huang, Q., et al., Kiap, a Novel Member of the Inhibitor of Apoptosis Protein Family, Biochem. Biophys. Res. Commun., 2000, vol. 279, pp. 820-831.

    Google Scholar 

  51. Kasof, G.M. and Gomes, B.C., Livin, a Novel Inhibitor of Apoptosis Protein Family Member, J. Biol. Chem., 2001, vol. 276, pp. 3228-3246.

    Google Scholar 

  52. Vucic, D., Stennicke, H.R., Pisabarro, M.T., et al., MLIAP, a Novel Ingibitor of Apoptosis, That Is Preferentially Expressed in Human Melanomas, Curr. Biol., 2000, vol. 10, pp. 1359-1366.

    Google Scholar 

  53. Wolf, B.B. and Green, D.R., Apoptosis: Letting Slip the Dogs of Dispatch War, Curr. Biol., 2002, vol. 12, pp. 177-179.

    Google Scholar 

  54. Susin, S.A., Lorenzo, H.K., Zanzani, N., et al., Molecular Characterization of Mitochondrial Apoptosis-Inducing Factor, Nature, 1999, vol. 397, pp. 441-446.

    Google Scholar 

  55. Suzuki, A., Imai, Y., Nakayama, H., et al., A Serine Protease, Htra2, Is Released from Mitochondria and Interacts with XIAP, Inducing Cell Death, Mol. Cell, 2001, vol. 8, pp. 613-621.

    Google Scholar 

  56. Kiselev, S.L., Kustikova, O.S., Korobko, E.V., et al., Molecular Cloning and Characterization of the Mouse tag7 Gene Encoding a Novel Cytokine, J. Biol. Chem., 1998, vol. 273, pp. 18 633-18 639.

    Google Scholar 

  57. Mirkina, I.I., Kiselev, S.L., Sashchenko, L.P., et al., Cloning of the Human tag7 Gene and Analysis of Its Genomic Organization, Dokl. Akad. Nauk, 1999, vol. 367,no. 4, pp. 548-552.

    Google Scholar 

  58. Choi, S., Park, I., Yun, J., et al., Bfl-1 Is Overexpressed in Stomach Cancer and a Related Gene, Preferentially Expressed in Bone Marrow, Oncogene, 1995, vol. 11,no. 7, pp. 1693-1699.

    Google Scholar 

  59. Subramanian, I., Boid, J., and Chanadurain, G., Functional Substitution Identifies a Cell Survival-Promoting Domain Common to Adenovirus E1B 19-kDa and Bcl-2 Proteins, Oncogene, 1995, vol. 11,no. 9, pp. 2403-2407.

    Google Scholar 

  60. Hunter, J.J., Bond, B., and Parslow, T.G., Functional Dissection of the Human Bcl-2 Protein: Sequence Requirements of Inhibition of Apoptosis, Mol. Cell. Biol., 1996, vol. 16,no. 3, pp. 877-883.

    Google Scholar 

  61. Oltvai, Z.N., Millian, C.L., and Korsmeyer, S.J., Bcl-2 Heterodimerizes in Vivo with a Conserved Homolog, Bax, That Accelerates Programmed Cell Death, Cell (Cambridge, Mass.), 1993, vol. 74, pp. 609-619.

    Google Scholar 

  62. Oltvai, Z.-N. and Korsmeyer, S.-J., Checkpoints of Dueling Dimmers Foil Death Wishes, Cell (Cambridge, Mass.), 1994, vol. 79, pp. 189-192.

    Google Scholar 

  63. Rajapaksa, R., Ginzton, N., Rott, L.S., et al., Altered Oncoprotein Expression and Apoptosis in Myeloplastic Syndrome Marrow Cells, Blood, 1996, vol. 88,no. 1, pp. 4275-4287.

    Google Scholar 

  64. Zheng, T.S., Hunot, S., Kuida, K., et al., Caspase Knockouts: Matters of Life and Death, Cell Death Differ., 1999, vol. 6, pp. 1043-1053.

    Google Scholar 

  65. Bergeron, L., Perez, G., McDonald, G., et al., Defects in Regulation of Apoptosis in Caspase 2-Deficient Mice, Genes Dev., 1998, vol. 12, pp. 1304-1314.

    Google Scholar 

  66. Woo, M., Hakem, R., Soengas, M.S., et al., Essential Contribution of Caspase 3/Cpp32 to Apoptosis and Its Associated Nuclear Changes, Genes Dev., 1998, vol. 12, pp. 806-819.

    Google Scholar 

  67. Varfolomeev, E.E., Schuchimann, M., Luria, V., et al., Targeted Disruption of the Mouse Caspase-8 Gene Ablates Cell Death Induction by the TNF Receptors FAS/APO1, and DR3 Is Lethal Prenatally, Immunity, 1998, vol. 9, pp. 267-276.

    Google Scholar 

  68. Haydar, T.F., Kuan, C.-Y., et al., Reduced Apoptosis and Cytochrome c-Mediated Caspase Activation in Mice Lacking Caspase-9, Cell (Cambridge, Mass.), 1998, vol. 94, pp. 325-337.

    Google Scholar 

  69. Hakem, R., Hakem, A., and Duncan, G.S., Differential Requirement for Caspase-9 in Apoptotic Pathways in Vivo, Cell (Cambridge, Mass.), 1998, vol. 94, pp. 339-352.

    Google Scholar 

  70. Nakagawa, T., Zhu, H., Morishima, N., et al., Caspase-12 Mediates Endoplasmic Reticulum-Specific Apoptosis and Cytotoxicity by Amyloid β, Nature, 2000, vol. 403, pp. 98-103.

    Google Scholar 

  71. Yeh, W.S., De La Pompa, J.L., McCurrachetan, E., et al., FADD: Essential for Embryo Development and Signaling from Some, But Not All, Inducers of Apoptosis, Science, 1998, vol. 279, pp. 1954-1958.

    Google Scholar 

  72. Zhang, J., Cado, D., Chen, A., et al., FAS-Mediated Apoptosis and Activation-Induced T-Cell Proliferation Are Defective in Mice Lacking FAAD/MORT1, Nature (London), 1998, vol. 332, pp. 296-300.

    Google Scholar 

  73. Yeh, W.S., Itie, A., Eplia, F., et al., Requirement for Casper (c-FLIP) in Regulation of Death Receptor-Induced Apoptosis and Embryonic Development, Immunity, 2000, vol. 12, pp. 633-642.

    Google Scholar 

  74. Yoshida, H., Kong, Y.-Y., and Yoshida, R., Apaf-1 Is Required for Mitochondria Pathways of Apoptosis and Brain Development, Cell (Cambridge, Mass.), 1998, vol. 94, pp. 739-750.

    Google Scholar 

  75. Li, K., Li, Y., Shelton, J.M., et al., Cytochrome C Deficiency Causes Embryonic Lethality and Attenuates Stress-Induced Apoptosis, Cell (Cambridge, Mass.), 2000, vol. 101, pp. 389-399.

    Google Scholar 

  76. Joza, N., Susin, S., Dangas, E., et al., Essential Role of the Mitochondrial Apoptosis-Inducing Factor in Programmed Cell Death, Nature, 2001, vol. 410,no. 6828, pp. 549-554.

    Google Scholar 

  77. Strasser, A., Apoptosis Signaling, Annu. Rev. Biochem., 2000, vol. 60, pp. 217-245.

    Google Scholar 

  78. Rinkenberger, J.L., Horning, S., Clocke, B., et al., Mcl-1 Deficiency Results in Peri-Implantation Embryonic Lethality, Genes Dev., 2000, vol. 14, pp. 23-27.

    Google Scholar 

  79. Knudson, C.M., Tung, S.K., Tourtellotte, W.G., et al., Bax-Deficient Mice with Lymphoid Hyperplasia and Male Germ Cell Death, Science, 1995, vol. 270, pp. 96-99.

    Google Scholar 

  80. Deckwerth, T.L., Elliott, J.L., and Knudson, C.M., Bax Is Required for Neuronal Death after Trophic Factor Deprivation and during Development, Neuron, 1996, vol. 17, pp. 401-411.

    Google Scholar 

  81. Meechan, T., Loveland, K.L., and de Kretser, D., Developmental Regulation of the bcl-2 Family during Spermatogenesis: Insight into the Sterility of Male Mice, Cell Death Differ., 2001, vol. 8, pp. 225-233.

    Google Scholar 

  82. Lindsten, T., Ros, A.J., and King, A., The Combined Functions of Proaptotic bcl-2 Family Members Bak and Bax Are Essential for Normal Development of Multiple Tissue, Mol. Cell, 2000, vol. 6, pp. 1389-1399.

    Google Scholar 

  83. Wei, M.S., Zong, W.-X., Cheng, E., et al., Proapoptotic Bax and Bak: A Requisite Gateway to Mitochondrial Dysfunction and Death, Science, 2001, vol. 292, pp. 727-730.

    Google Scholar 

  84. Yin, X.M., Wang, K., Gross, A., et al., Bid-Deficient Mice Are Resistant to Fas-Induced Hepatocellular Apoptosis, Nature, 1999, vol. 400, pp. 886-891.

    Google Scholar 

  85. Bonnillet, P., Metcolf, T., Huang, T., et al., Proapoptotic Bcl-2 Relative Bim Required for Certain Apoptotic Responses, Leukocyte Homeostasis, and Preclude Autoimmunity, Science, 1999, vol. 286, pp. 1735-1738.

    Google Scholar 

  86. Rodriquez, I., Matsuura, K., Khatib, A., et al., A bcl-2 Transgene Expressed in Hepatocytes Protects Mice from Fulminant Liver Destruction but Not from Rapid Death Induced by Anty-Fas Antibody Injection, J. Exp. Med., 1996, vol. 183,no. 3, pp. 1031-1037.

    Google Scholar 

  87. Green, D.R., A Report, Conference “Cell Signaling and Cancer Treatment,” Telfs-Buchen, Austria, 1997.

    Google Scholar 

  88. Nicholson, D.W., Green, D.R., and Kluck, R.M., The Release of Cytochrome C from Mitochondria: A Primary Sticite for bcl-2 Regulation of Apoptosis, Science, 1997, vol. 275, pp. 1132-1136.

    Google Scholar 

  89. Whyte, M., ICE/CED-3 Protease in Apoptosis, Trends Cell Biol., 1996, vol. 6, pp. 245-248.

    Google Scholar 

  90. Nicholson, D., A Report, Conference “Cell and Cancer Treatment,” Telfs-Buchen, Austria, 1997.

    Google Scholar 

  91. Salvesen, G.S. and Dixit, V.M., Caspases: Intracellular Signaling by Proteolysis, Cell (Cambridge, Mass.), 1997, vol. 91, pp. 443-446.

    Google Scholar 

  92. Erhardt, P. and Cooper, G.M., Activation of the Cpp32 Apoptotic Protease by Distinct Signaling Pathways with Differention the Sensitivity Bcl-xl, J. Biol. Chem., 1996, vol. 271, pp. 17 601-17 610.

    Google Scholar 

  93. Schimizu, S., Equshi, Y., Kaniika, W., et al., BCL-2 Expression Prevents Activation of the Protease Cascade, Oncogene, 1996, vol. 12,no. 11, pp. 2251-2259.

    Google Scholar 

  94. Neumeyer, D., Farschon, D., Reed, J., et al., Cell-Free Apoptosis in Xenopus Egg Extracts: Inhibition by bcl-2 and Requirement for an Organelle Fraction Enriched in Mitochondria, Cell (Cambridge, Mass.), 1994, vol. 79, pp. 353-360.

    Google Scholar 

  95. Takahachi, A., Alnemri, E.S., Lazebnik, Y.A., et al., Cleavage of Lamin a by Mch2αbut Not CCP32: Multiple Interleukin 1β-Converting Enzyme-Related Proteases with Distinct Substrate Recognition Properties Are Active, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 8395-8401.

    Google Scholar 

  96. Yang, J., Lin, X., Bhala, K., et al., Prevention of Apoptosis by Bcl-2: Release of Cytochrome C from Mitochondria Blocked, Science, 1997, vol. 275,no. 5288, pp. 1129-1133.

    Google Scholar 

  97. Wang, H.G., Rapp, U., and Reed, J., Bcl-2 Targets the Protein Kinase Raf-1 to Mitochondria, Cell (Cambridge, Mass.), 1996, vol. 87, pp. 629-638.

    Google Scholar 

  98. Ashkenazi, A. and Dherin, V.M., Death Receptors: Signaling and Modulation, Science, 1998, vol. 281, pp. 1305-1308.

    Google Scholar 

  99. Yeh, W.S., FADD: Essential Embryo Development and Signaling from Some, but Not All, Inducers of Apoptosis, Science, 1998, vol. 279, pp. 1954-1958.

    Google Scholar 

  100. Wolf, B. and Green, D.R., Suicidal Tendencies: Apoptotic Cell Death by Caspase Family Proteinases, J. Biol. Chem., 1999, vol. 274, pp. 20 049-20 052.

    Google Scholar 

  101. Scaffid, C., Fulda, S., Scrinivasan, A., et al., Two CD95(Apo-1/FAS) Signaling Pathways, EMBO J., 1998, vol. 17, pp. 1675-1687.

    Google Scholar 

  102. Mercer, E.A., Korhonen, L., Scoglosa, Y., et al., NAIP Interacts with Hippocalcin and Protects Neurons against Calcium-Induced Cell Death through Caspase 3-Dependent and Independent Pathways, EMBO J., 2000, vol. 19, pp. 3597-3607.

    Google Scholar 

  103. Sashchenko, L.P., Kabanova, O.D., Luk'yanova, T.I., et al., The Role of Target Cells in Cytolysis Induced by Lymphokine-Activated Killers, Dokl. Akad. Nauk, 1996, vol. 346,no. 1, pp. 125-128.

    Google Scholar 

  104. Yashin, D.V., Dukhanina, E.A., Kabanova, O.D., et al., Specific Death of L-929 Cells on Exposure to Cytotoxic Proteins of Lymphoid and Erythroid Cells, Dokl. Akad. Nauk, 2002, vol. 383,no. 5, pp. 694-697.

    Google Scholar 

  105. Sanna, M.G., Correia, J., Ducrey, O., et al., IAP Suppression of Apoptosis Involves Distinct Mechanisms: The TAK1/JNK1 Signaling Cascade and Caspase Inhibition, Mol. Cell. Biol., 2002, vol. 22,no. 6, pp. 1754-1766.

    Google Scholar 

  106. Korobko, E.V., Saschenko, L.P., Prockhorchouk, E.B., et al., Resistance to Tumor Necrosis Factor-Induced Apoptosis in Vitro Correlates with High Metastatic Capacity of Cells in Vivo, Immunol. Lett., 1999, vol. 67, pp. 71-76.

    Google Scholar 

  107. Thompson, C.B., Apoptosis in the Pathogenesis and Treatment of Disease, Science, 1995, vol. 267, pp. 1456-1462.

    Google Scholar 

  108. Holcik, M., Do Mature Red Blood Cells Die by Apoptosis?, Trends Genet., 2002, vol. 18,no. 3, p. 121.

    Google Scholar 

  109. Quarrie, L.H., Addey, C., and Wilde, C.J., Programmed Cell Death during Mammary Tissue Involution Induced by Weaning, Litter Removal, and Milk Stasis, J. Cell. Physiol., 1996, vol. 168, pp. 559-569.

    Google Scholar 

  110. Fulda, S., Wick, W., Weller, M., et al., Smac Agonists Sensitive for Apo2L/TRAIL or Anticancer Drug-Induced Apoptosis and Induce Regression of Malignant Glioma in Vivo, Nat. Med., 2002, vol. 8, pp. 808-815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, L.S., Korochkin, L. Apoptosis: Genetically Programmed Cell Death. Russian Journal of Genetics 40, 99–113 (2004). https://doi.org/10.1023/B:RUGE.0000016982.08548.9f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUGE.0000016982.08548.9f

Keywords

Navigation