Skip to main content
Log in

Sucrose Regulates Elongation of Carrot Somatic Embryo Radicles as a Signal Molecule

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Elongation of carrot somatic embryo radicles was inhibited by sucrose at or above 5%(145 mM). This effect would not be released until the sucrose concentration was lowered again. Morphological and cytological studies as well as determination of ABA content and analysis of the expression mode of a Lea gene, all point to its similarity to natural dormancy and germination of seeds. Use of monosaccharides (glucose and fructose), other disaccharide (maltose), and isomolar concentration of osmotica (mannitol and sorbitol), did not show similar regulatory effect. It is thus clear that the regulatory effect is not a result of simple osmotic stress. Hexokinase inhibitors such as glucosamine and N-acetyl-glucosamine did not exert any influence on the regulation–deregulation effects of sucrose. Mannose, which inhibits germination of Arabidopsis seeds, did not prevent carrot somatic embryo radicles from elongating. It is thus inferred that this sucrose-signaling pathway may be independent of hexokinase. As a first step to understand the molecular mechanism of this process, a carrot sucrose transporter gene (cSUT) expressed in the embryos and roots specifically was isolated. Studies on transformed yeast mutant with cSUT cDNA identified its sucrose transport activity. Northern hybridization and gel retardation experiment revealed that there is a marked increase in expression of cSUT at the beginning of somatic embryo germination, and this is attributed to regulation on the level of transcription. This suggested the possibility that cSUT has an important role in this sucrose signal regulation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. 1995. Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 3rd edn. John Wiley & Sons, Inc, New York, pp. 509-510.

    Google Scholar 

  • Barker, L., Kühn, C., Weise, A., Schulz, A., Gebhardt, C., Hirner, B., Hellmann, H., Schulze, W., Ward, J.M. and Frommer, W.B. 2000. SUT2, a putative sucrose sensor in sieve elements. Plant Cell 12: 1153-1164.

    Google Scholar 

  • Bewley, J.D. 1997. Seed germination and dormancy. Plant Cell 9: 1055-1066.

    Article  PubMed  Google Scholar 

  • Bhalerao, R.P., Salchert, K., Bako, L., Okresz, L., Szabados, L., Muranaka, T., Machida, Y., Schell, J. and Koncz, C. 1999. Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proc. Natl. Acad. Sci. USA 96, 5322-5327.

    Article  Google Scholar 

  • Boorer, K.J., Loo, D.D., Frommer, W.B. and Wright, E.M. 1996. Transport mechanism of the cloned potato H+/sucrose transporter StSUT1. J. Biol. Chem. 271: 25139-25144.

    Article  PubMed  Google Scholar 

  • Brouquisse, R., Evrard, A., Rolin, D., Raymond, P. and Roby, C. 2001. Regulation of protein degradation and protease expression by mannose in maize root tips: Pi sequestration by mannose may hinder the study of its signaling properties. Plant Physiol. 125: 1485-1498.

    Article  PubMed  Google Scholar 

  • Bush, D.R. 1993. Proton-coupled sugar and amino acid transporters in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 513-542.

    Article  Google Scholar 

  • Chanader, P.M. and Robertson, M. 1994. Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 113-141.

    Article  Google Scholar 

  • Chiou, T.J. and Bush, D.R. 1998. Sucrose is a signal molecule in assimilate partitioning. Proc. Natl. Acad. Sci. USA 95: 4784-4788.

    Article  PubMed  Google Scholar 

  • Choi, D.K., Park, H.J. and Kim, I.S. 1996. A negative regulatory factor for the dark repression of Arabidopsis thaliana cab1 gene. Photochem. Photobiol. 64: 870-875.

    PubMed  Google Scholar 

  • Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal. Biochem. 162: 156-159.

    Article  PubMed  Google Scholar 

  • Cirillo, V.P. 1969. Sugar transport in normal and mutant yeast cells. Meth. Enzymol. 174: 617-622.

    Google Scholar 

  • Delrot, S. and Bonnemain, J.L. 1981. Involvement of protons as a substrate for the sucrose carrier during phloem loading in Vicia faba leaves. Plant Physiol. 67: 560-564.

    Google Scholar 

  • Diao, F.Q., Zhang, L., Huang, M.J. and Wu, N.H. 2000. Isolation of development-related genes in somatic embryo radicle of carrot (Daucus carota L.) using modified cDNA RDA. Sci. China (Series C) 43: 47-56.

    Google Scholar 

  • Dure, L III. 1993. The lea protein of high plants. In: D.P.S. Verma (Ed.), Control of Plant Gene Expression. CRC Press Inc., Boca Raton, pp. 325-335.

    Google Scholar 

  • Ehness, R., Ecker, M., Godt, D.E. and Roitsch, T. 1997. Glucose and stress independently defence mechanisms via signal transduction pathways involving protein phosporylation. Plant Cell 9: 1825–1841

    Article  PubMed  Google Scholar 

  • Farras, R., Ferrando, A., Jasik, J., Kleinow, T., Okresz, L., Tiburcio, A., Salchert, K., del Pozo, C., Schell, J. and Koncz, C. 2001 SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase. EMBO J. 20: 2742-2756.

    Article  PubMed  Google Scholar 

  • Finkelstein, R.R. and Crouch, M.L. 1987. Hormonal and osmotic effects on development potential of maturing rapseed. Hortscience 22: 797-800.

    Google Scholar 

  • Finkelstein, R.R., Gampala, S.S.L and Rock, C.D. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell Supplement: S15-S45.

  • Finnie, C., Borch, J. and Collinge, D.B. 1999. 14-3-3 proteins: eukaryotic regulatory proteins with many functions. Plant Mol. Biol. 40: 545-554.

    Article  PubMed  Google Scholar 

  • Fujiki, Y., Ito, M., Nishida, I. and Watanabe, A. 2000. Multiple signaling pathways in gene expression during sugar starvation: pharmacological analysis of din gene expression in suspension-cultured cells of Arabidopsis. Plant Physiol. 124: 1139-1148.

    Article  PubMed  Google Scholar 

  • Furuichi, T., Mori, I.C., Takahashi, K. and Muto, S. 2001. Sugar-induced increase in cytosolic Ca2+ in Arabidopsis thaliana whole plants. Plant Cell Physiol. 42: 1149- 1155.

    Article  PubMed  Google Scholar 

  • Gahrtz, M., Schmelzer, E., Stolz, J. and Sauer, N. 1996. Expression of the PmSUC1 sucrose carrier gene from Plantago major L. is induced during seed development. Plant J. 9: 93-100.

    Article  PubMed  Google Scholar 

  • Gibson, S.I. 2000. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 124: 1532-1539.

    Article  PubMed  Google Scholar 

  • Goddijn, O. and Smeekens, S. 1998. Sensing trehalose biosynthesis in plants. Plant J. 14: 143-146.

    Article  PubMed  Google Scholar 

  • Graham, I.A., Denby, K.J. and Leaver, C.J. 1994. Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6: 761-772.

    Article  PubMed  Google Scholar 

  • Halford, N.G. and Hardie, D.G. 1998. SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol. Biol. 37: 735-748.

    Article  PubMed  Google Scholar 

  • Harada, J.J. 1997. Seed maturation and control of germination. In: B.A. Larkins and I.K. Vasil (Eds.), Cellular and Molecular Biology of Plant Seed Development. Kluwer Academic Publishers, Dordrecht, pp. 545-592.

    Google Scholar 

  • Hardie, D.G., Carling, D. and Carlson, M. 1998. The AMPactivated/ SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67: 821-855.

    Article  PubMed  Google Scholar 

  • Henderson, P.J.F. 1990. Proton-linker sugar transport systems in bacteria. J. Bioenergetics Biomembr. 22: 525-569.

    Google Scholar 

  • Hirose, T., Imaizumi, N., Scofield, G.N., Furbank, R.T. and Ohsugi, R. 1997. cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice (Oryza sativa L.). Plant Cell Physiol. 38: 1389-1396.

    PubMed  Google Scholar 

  • Hofmann, M. and Roitsch, T. 2000. The hexokinase inhibitor glucosamine exerts a concentration dependent dual effect on protein kinase activety in vitro. J. Plant Physiol. 157: 13- 16.

    Google Scholar 

  • Huang, M.J., Huang, S.X., Sodmergen, and Zhu, C. 1994. Studies on enhanced vigor of carrot somatic embryos by culture regulation. Chin. Sci. Bull. 39: 597-602.

    Google Scholar 

  • Ikeda, Y., Koizumi, N., Kusano, T. and Sano, H. 2000. Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase. J. Biol. Chem. 275: 31695-31700.

    Article  PubMed  Google Scholar 

  • Iwata, Y., Kuriyama, M., Nakakita, M., Kojima, H., Ohto, M. and Nakamura, K. 1998. Characterization of a calciumdependent protein kinase of tobacco leaves that is associated with the plasma membrane and is inducible by sucrose. Plant Cell Physiol. 39: 1176-1183.

    PubMed  Google Scholar 

  • Jang, J.C., Leon, P., Zhou, L. and Sheen, J. 1997. Hexokinase as a sugar sensor in higher Plants.Plant Cell 9: 5-19.

    Article  PubMed  Google Scholar 

  • Jang, J.C. and Sheen, J. 1994. Sugar sensing in higher plants. Plant Cell 6: 1665-1679.

    Article  PubMed  Google Scholar 

  • Kaback, H.R. 1992. b-galactoside transport in Escherichia coli: the ins and outs of lactose permease. In: J.A.F. Op den Kamp (Ed.), Dynamics in Membrane Assembly, NATO ASI Series, Springer-Verlag, Berlin, pp. 293-308.

    Google Scholar 

  • Karen, S. 1990. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503-512.

    Article  PubMed  Google Scholar 

  • Koch, K.E. 1996. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 509- 540.

    Article  PubMed  Google Scholar 

  • Koornneef, M., Bentsink, L. and Hilhorst, H. 2002. Seed dormancy and germination. Curr. Opin. Plant Biol. 5: 33-36.

    Article  PubMed  Google Scholar 

  • Krook, J., Vreugdenhil, D. and van der Plas Linus, H.W. 2000. Uptake and phosphorylation of glucose and fructose in Dacus carota cell suspensions are differently regulated. Plant Physiol. Biochem. 38: 603–612

    Article  Google Scholar 

  • Lalonde, S., Boles, E., Hellmann, H., Barker, L., Patrick, J.W., Frommer, W.B. and Ward, J.M. 1999. The dual function of sugar carriers: transport and sugar sensing. The Plant Cell 11: 707-726.

    Article  PubMed  Google Scholar 

  • Lin, H.X., Zhang, L., Yang, Z.P., Huang, M.J. and Wu, N.H. 2003. Molecular characterization of poly(A)-binding protein from Daucus carota. DNA Seq. 14: 147-153.

    Article  PubMed  Google Scholar 

  • Loreti, E., Alpi, A. and Perata, P. 2000. Glucose and disaccharide-sensing mechanisms modulate the expression of a-amylase in barley embryos. Plant Physiol. 123: 939-948.

    Article  PubMed  Google Scholar 

  • Marger, M. and Saier M, Jr. 1993. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem. Sci. 18: 13-20.

    Article  PubMed  Google Scholar 

  • Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.H., Liu, Y.X., Hwang, I., Jones, T. and Sheen, J. 2003. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300: 332-336.

    Article  PubMed  Google Scholar 

  • Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15: 473-497.

    Google Scholar 

  • Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucl. Acid Res. 8: 4321- 4325.

    Google Scholar 

  • Ohto, M.A. and Nakamura, K. 1995. Sugar-induced increase of calcium-dependent protein kinases associated with the plasma membrane in leaf tissues of tobacco. Plant Physiol. 109: 973-981.

    PubMed  Google Scholar 

  • Pego, J.V., Weisbeed, P.J., and Smeekens, S.C.M. 1999. Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol. 119: 1017-1023.

    Article  PubMed  Google Scholar 

  • Riesmeier, J.W., Hirner, B. and Frommer, W.B. 1993. Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 5: 1591-1598.

    Article  PubMed  Google Scholar 

  • Riesmeier, J.W., Willmitzer, L. and Frommer, W.B. 1992. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 11: 4705-4713.

    PubMed  Google Scholar 

  • Riesmeier, J.W., Willmitzer, L. and Frommer, W.B. 1994. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J. 13: 1-7.

    PubMed  Google Scholar 

  • Roitsch, T. 1999. Source-sink regulation by sugar and stress. Curr. Opin. Plant Boil. 2: 198-206.

    Article  Google Scholar 

  • Rolland, F., Moore, B. and Sheen, J. 2002. Sugar sensing and signaling in plants. Plant Cell Supplement: S185-S205.

  • Sauer, N. and Stolz, J. 1994. SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker's yeast and identification of the histidine tagged protein. The Plant J. 6: 67-77.

    Article  Google Scholar 

  • Sehnke, P.C., DeLille, J.M. and Ferl, R.J. 2002. Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. Plant Cell 14 (Supplement): S339-S354.

    PubMed  Google Scholar 

  • Shakya, R. and Sturm, A. 1998. Characterization of sourceand sink-specific sucrose/H+ symporters from carrot. Plant Physiol. 118: 1473-1480.

    Article  PubMed  Google Scholar 

  • Sheen, J. 1993. Protein phosphatase activity is required for light-inducible gene expression in maize. EMBO J. 12: 3497- 3505.

    PubMed  Google Scholar 

  • Sheen, J. 1999. C4 gene expression. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 187-217.

    Article  PubMed  Google Scholar 

  • Sheen, J, Zhou, L. and Jang, J.C. 1999. Sugars as signaling molecules. Curr. Opin. Plant Biol. 2: 410-418.

    Article  PubMed  Google Scholar 

  • Smeekens, S. 2000. Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 49-81.

    Article  PubMed  Google Scholar 

  • Sugden, C, Crawford, R.M., Halford, N.G. and Hardie, D.G. 1999. Regulation of spinach SNF1-related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5′-AMP. Plant J. 19: 433-439.

    Article  PubMed  Google Scholar 

  • Takeda, S., Mano, S., Ohto, M. and Nakamura, N. 1994. Inhibitors of protein phosphatases 1 and 2A block the sugarinducible gene expression in plants. Plant Physiol. 106: 567- 574.

    PubMed  Google Scholar 

  • Toyofudu, K., Umemura, T.A. and Yamaguchi, J. 1998. Promoter elements required for sugar-repression of the RAmy3D gene for a-amylase in rice. FEBS Lett. 428: 275-280.

    Article  PubMed  Google Scholar 

  • Weber, H., Borisjuk, L., Heim, U., Sauer, N. and Wobus, U. 1997. A role for sugar transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell 9: 895-908.

    Article  PubMed  Google Scholar 

  • Weise, A., Barker, L., Kuhn, C., Lalonde, S., Buschmann, H., Frommer, W.B. and Ward, J.M. 2000. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants. Plant cell 12: 1345-1355.

    Article  PubMed  Google Scholar 

  • Wobus, U. and Weber, H. 1999a. Sugars as signal molecules in plant seed development. Biol. Chem. 380: 937-944.

    Article  PubMed  Google Scholar 

  • Wobus, U. and Weber, H. 1999b. Seed maturation: genetic programmes and control signals. Curr. Opin. Plant Biol. 2: 33-38.

    Article  PubMed  Google Scholar 

  • Wu, S.R., Chen, W.F. and Zhou, X. 1988. Enzyme liked immunosorbent assay for endogenous plant hormones. Plant Physiol. Commun. (5): 53-58 (in Chinese).

    Google Scholar 

  • Yang, Z.P., Zhang, L., Diao, F.Q., Huang, M.J. and Wu, N.H. 2003. Cloning and expression of DnaJ homolog in carrot somatic embryo. Prog. Natural Sci. 13: 350-356.

    Article  Google Scholar 

  • Zhang, L., Yang, Z.P., Liu, Y.M., Huang, M.J. and Wu, N.H. 2002. Isolation of related-development genes in somatic embryo radicle of carrot (Daucus carota L.) by a combination of differential screening cDNA library and suppression subtractive hybridization. Progr. Natural Sci. 12: 261-265 (in Chinese).

    Google Scholar 

  • Zhang, N.G., Xu, Y.J. and Zhou, X. 1991. The development of an indirect enzyme liked immunosorbent assay for abscisic acid. J. Nanjing Agric. Univ. 14: 21-24 (in Chinese).

    Google Scholar 

  • Zhou, J., Theodoulou, F., Sauer, N., Sanders, D. and Miller, A.J. 1997. A kinetic model with ordered cytoplasmic dissociation for SUC1, an Arabidopsis H+/sucrose cotransporter expressed in Xenopus oocytes. J. Membr. Biol. 159: 113-125.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Zhang, L., Diao, F. et al. Sucrose Regulates Elongation of Carrot Somatic Embryo Radicles as a Signal Molecule. Plant Mol Biol 54, 441–459 (2004). https://doi.org/10.1023/B:PLAN.0000036375.40006.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000036375.40006.d3

Navigation